CCPortal
DOI10.1007/s10533-020-00711-5
Contrasting stream nitrate and sulfate response to recovery from experimental watershed acidification
Patel K.F.; Fernandez I.J.; Nelson S.J.; Malcomb J.; Norton S.A.
发表日期2020
ISSN0168-2563
起始页码127
结束页码138
卷号151期号:2020-02-03
英文摘要Improvements in air quality have led to ecosystem recovery from acidic deposition, but the mechanisms and trajectories of this recovery are not fully understood. Here, we present long-term stream response and recovery data for paired watersheds at the Bear Brook Watershed in Maine (BBWM) during declining ambient SO4 and NO3 in precipitation. East Bear (EB) received ambient deposition from 1989 to 2018; West Bear (WB) received artificially elevated N + S from 1989 to 2016. The WB treatment was discontinued after 2016, the beginning of the recovery from both the experimental N + S and ambient decline. Stream SO4 in WB gradually declined after the treatment ended, from ~147 μeq L−1 in 2010–16 to ~126 μeq L−1 in 2017–18. The declining S inputs induced desorption of SO4 from soil phase surfaces, with stream loss far exceeding precipitation input. At the current rate of recovery, it will be many decades before the WB stream returns to pre-treatment SO4 concentrations. In contrast, NO3 is only weakly adsorbed in soil, and WB stream NO3 concentrations rapidly declined from ~39 μeq L−1 in 2010–16 to ~5 μeq L−1 in 2017–18, comparable to the N-limited EB stream. The acid anions are strongly coupled to base cation chemistry in streams, and there was a distinct hysteretic response of Ca and Mg to the chronic acidification, as (Ca + Mg) increased rapidly during the initial years, followed by declining values due to depletion of the soil exchange complex. This 30-year monitoring study (1989–2019) provides insights into recovery mechanisms from acidic deposition and highlights the role of abiotic processes in soil that mediate nutrient cycling and retention. Documenting the rapid response of N alongside the slower recovery for S identifies the temporal resolution necessary for other whole-watershed recovery studies. © 2020, Springer Nature Switzerland AG.
英文关键词Acidic deposition; Acidification and recovery; Adsorption; Nitrate; Sulfate
语种英语
来源期刊Biogeochemistry
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/153088
作者单位Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; School of Forest Resources, University of Maine, Orono, ME 04469-5790, United States; Climate Change Institute, University of Maine, Orono, ME 04469-5790, United States; Appalachian Mountain Club, Gorham, NH 03581, United States; Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, United States; School of Earth and Climate Sciences, University of Maine, Orono, ME 04469-5790, United States
推荐引用方式
GB/T 7714
Patel K.F.,Fernandez I.J.,Nelson S.J.,et al. Contrasting stream nitrate and sulfate response to recovery from experimental watershed acidification[J],2020,151(2020-02-03).
APA Patel K.F.,Fernandez I.J.,Nelson S.J.,Malcomb J.,&Norton S.A..(2020).Contrasting stream nitrate and sulfate response to recovery from experimental watershed acidification.Biogeochemistry,151(2020-02-03).
MLA Patel K.F.,et al."Contrasting stream nitrate and sulfate response to recovery from experimental watershed acidification".Biogeochemistry 151.2020-02-03(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patel K.F.]的文章
[Fernandez I.J.]的文章
[Nelson S.J.]的文章
百度学术
百度学术中相似的文章
[Patel K.F.]的文章
[Fernandez I.J.]的文章
[Nelson S.J.]的文章
必应学术
必应学术中相似的文章
[Patel K.F.]的文章
[Fernandez I.J.]的文章
[Nelson S.J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。