Climate Change Data Portal
DOI | 10.5194/acp-20-13905-2020 |
Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology | |
Adam M.; Nicolae D.; Stachlewska I.S.; Papayannis A.; Balis D. | |
发表日期 | 2020 |
ISSN | 16807316 |
起始页码 | 13905 |
结束页码 | 13927 |
卷号 | 20期号:22 |
英文摘要 | The methodology of analysing the biomass burning events recorded in the database of the European Aerosol Research Lidar Network in the framework of the Aerosol, Clouds and Trace Gases Research Infrastructure is presented. The period of 2008–2017 was chosen to analyse all of the events stored in the database under the Forest Fire category for a total of 14 stations available. The data provided ranged from complete datasets (particle backscatter, extinction and linear depolarization ratio profiles) to single profiles (particle backscatter coefficient profile). Smoke layers geometry was evaluated and the mean optical properties within each layer were computed. The back-trajectory technique was used to double-check the source of all pollution layers. The biomass burning layers were identified by taking into account the presence of the fires along the back trajectory. The biomass burning events are analysed by the means of the intensive parameters. The analysis was structured in three directions: (I) common biomass burning source (fire) recorded by at least two stations, (II) long-range transport from North America, and (III) analysis over four geographical regions (south-eastern Europe, north-eastern Europe, central Europe, and south-western Europe). Based on back-trajectory calculations and fire locations, the lidar measurements can be labelled either as measurements of a “single fire” or “mixed fires” (case I), measurements of North American fires, or measurements of mixed North American and local fires (case II). The histogram of the fire locations reveals the smoke sources for each region. For each region, statistics on intensive parameters are performed. The source origin of the intensive parameters is categorized based on the continental origin of the air mass (European, African, Asian, North American, or a combination of them). The methodology presented here is meant to provide a perspective to explore a large number of lidar data and deliver novel approaches to analyse the intensive parameters based on the assigned biomass burning sources. A thorough consideration of all potential fire sources reveals that most of the time the lidar measurements characterize the smoke from a mixture of fires. A comprehensive discussion of all the results (based on the intensive parameters and the source locations) will be given in a companion paper submitted to the ACP EARLINET special issue. © Author(s) 2020. This work is distributed under |
语种 | 英语 |
scopus关键词 | biomass burning; data processing; forest fire; lidar; long range transport; measurement method; smoke; North America |
来源期刊 | Atmospheric Chemistry and Physics |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/152814 |
作者单位 | National Institute for R&D in Optoelectronics, Magurele, 077225, Romania; Institute of Geophysics, Faculty of Physics, University of Warsaw02093, Poland; National Technical University of Athens, Department of Physics, Athens, 15780, Greece; Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece |
推荐引用方式 GB/T 7714 | Adam M.,Nicolae D.,Stachlewska I.S.,等. Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology[J],2020,20(22). |
APA | Adam M.,Nicolae D.,Stachlewska I.S.,Papayannis A.,&Balis D..(2020).Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology.Atmospheric Chemistry and Physics,20(22). |
MLA | Adam M.,et al."Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology".Atmospheric Chemistry and Physics 20.22(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。