CCPortal
DOI10.5194/cp-15-389-2019
Technical note: Optimizing the utility of combined GPR; OSL; and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
Dougherty A.J.; Choi J.-H.; Turney C.S.M.; Dosseto A.
发表日期2019
ISSN18149324
起始页码389
结束页码404
卷号15期号:1
英文摘要Records of past sea levels, storms, and their impacts on coastlines are crucial for forecasting and managing future changes resulting from anthropogenic global warming. Coastal barriers that have prograded over the Holocene preserve within their accreting sands a history of storm erosion and changes in sea level. High-resolution geophysics, geochronology, and remote sensing techniques offer an optimal way to extract these records and decipher shoreline evolution. These methods include light detection and ranging (lidar) to image the lateral extent of relict shoreline dune morphology in 3-D, ground-penetrating radar (GPR) to record paleo-dune, beach, and nearshore stratigraphy, and optically stimulated luminescence (OSL) to date the deposition of sand grains along these shorelines. Utilization of these technological advances has recently become more prevalent in coastal research. The resolution and sensitivity of these methods offer unique insights on coastal environments and their relationship to past climate change. However, discrepancies in the analysis and presentation of the data can result in erroneous interpretations. When utilized correctly on prograded barriers these methods (independently or in various combinations) have produced storm records, constructed sea-level curves, quantified sediment budgets, and deciphered coastal evolution. Therefore, combining the application of GPR, OSL, and Lidar (GOaL) on one prograded barrier has the potential to generate three detailed records of (1) storms, (2) sea level, and (3) sediment supply for that coastline. Obtaining all three for one barrier (a GOaL hat-trick) can provide valuable insights into how these factors influenced past and future barrier evolution. Here we argue that systematically achieving GOaL hat-tricks on some of the 300+ prograded barriers worldwide would allow us to disentangle local patterns of sediment supply from the regional effects of storms or global changes in sea level, providing for a direct comparison to climate proxy records. Fully realizing this aim requires standardization of methods to optimize results. The impetus for this initiative is to establish a framework for consistent data collection and analysis that maximizes the potential of GOaL to contribute to climate change research that can assist coastal communities in mitigating future impacts of global warming. © 2019 Author(s).
语种英语
scopus关键词climate change; coastal evolution; coastal zone; global warming; Holocene; lidar; optimization; paleoclimate; paleoenvironment; remote sensing; storm
来源期刊Climate of the Past
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/146847
作者单位School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2522, Australia; Department of Earth and Environmental Sciences, Korea Basic Science Institute, Ochang, 28119, South Korea; Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
推荐引用方式
GB/T 7714
Dougherty A.J.,Choi J.-H.,Turney C.S.M.,et al. Technical note: Optimizing the utility of combined GPR; OSL; and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution[J],2019,15(1).
APA Dougherty A.J.,Choi J.-H.,Turney C.S.M.,&Dosseto A..(2019).Technical note: Optimizing the utility of combined GPR; OSL; and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution.Climate of the Past,15(1).
MLA Dougherty A.J.,et al."Technical note: Optimizing the utility of combined GPR; OSL; and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution".Climate of the Past 15.1(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dougherty A.J.]的文章
[Choi J.-H.]的文章
[Turney C.S.M.]的文章
百度学术
百度学术中相似的文章
[Dougherty A.J.]的文章
[Choi J.-H.]的文章
[Turney C.S.M.]的文章
必应学术
必应学术中相似的文章
[Dougherty A.J.]的文章
[Choi J.-H.]的文章
[Turney C.S.M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。