CCPortal
DOI10.5194/cp-16-1523-2020
Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m)
Chan W.-L.; Abe-Ouchi A.
发表日期2020
ISSN18149324
起始页码1523
结束页码1545
卷号16期号:4
英文摘要The second phase of the Pliocene Model Intercomparison Project (PlioMIP2) has attracted many climate modelling groups in its continuing efforts to better understand the climate of the mid-Piacenzian warm period (mPWP) when atmospheric CO2was last closest to presentday levels. Like the first phase, PlioMIP1, it is an internationally coordinated initiative that allows for a systematic comparison of various models in a similar manner to the Paleoclimate Modelling Intercomparison Project (PMIP). Model intercomparison and model data comparison now focus specifically on the interglacial at marine isotope stage KM5c (3.205 Ma), and experimental design is not only based on new boundary conditions but includes various sensitivity experiments. In this study, we present results from long-term model integrations using the MIROC4m (Model for Interdisciplinary Research on Climate) atmosphere ocean coupled general circulation model, developed at the institutes CCSR, NIES and FRCGC in Japan. The core experiment, with CO2levels set to 400 ppm, shows a warming of 3.1 °C compared to the pre-industrial period, with two-thirds of the warming being attributed to the increase in CO2. Although this level of warming is less than that in the equivalent PlioMIP1 experiment, there is slightly better agreement with proxy sea surface temperature (SST) data at PRISM3 (PRISM Pliocene Research Interpretation and Synoptic Mapping) locations, especially in the northern North Atlantic where there were large model data discrepancies in PlioMIP1. Similar spatial changes in precipitation and sea ice are seen and the Arctic remains ice-free in the summer in the core experiments of both phases. Comparisons with both the proxy SST data and proxy surface air temperature data from paleobotanical sites indicate a weaker polar amplification in model results. Unlike PlioMIP1, the Atlantic Meridional Overturning Circulation (AMOC) is now stronger than that of the pre-industrial period, even though increasing CO2tends to weaken it. This stronger AMOC is a consequence of a closed Bering Strait in the PlioMIP2 paleogeography. Also, when present-day boundary conditions are replaced by those of the Pliocene, the dependency of the AMOC strength on CO2is significantly weakened. Sensitivity tests show that lower values of CO2give a global SST which is overall more consistent with the PRISM3 SST field presented in PlioMIP1, while SSTs at many of the PRISM4 sites are still too high to be reconciled with any of the model results. On the other hand, tropical Pacific SST in the core experiment agrees well with more recent proxy data, which suggested that PRISM3 SST there was overestimated. Future availability of climate reconstructions from proxy data will continue to help evaluate model results. The inclusion of dynamical vegetation and the effects of all possible extreme orbital configurations outside KM5c should be considered in future experiments using MIROC4m for the mPWP © 2020 EDP Sciences. All rights reserved.
语种英语
scopus关键词climate modeling; interglacial; marine isotope stage; meridional circulation; paleoclimate; Pliocene; precipitation (climatology); sea ice; sea surface temperature; simulation; Atlantic Ocean; Atlantic Ocean (North); Bering Strait; Japan; Pacific Ocean; Pacific Ocean (Tropical)
来源期刊Climate of the Past
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/146682
作者单位Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, 277-8564, Japan; National Institute for Polar Research, Tachikawa, 190-8518, Japan
推荐引用方式
GB/T 7714
Chan W.-L.,Abe-Ouchi A.. Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m)[J],2020,16(4).
APA Chan W.-L.,&Abe-Ouchi A..(2020).Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m).Climate of the Past,16(4).
MLA Chan W.-L.,et al."Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m)".Climate of the Past 16.4(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chan W.-L.]的文章
[Abe-Ouchi A.]的文章
百度学术
百度学术中相似的文章
[Chan W.-L.]的文章
[Abe-Ouchi A.]的文章
必应学术
必应学术中相似的文章
[Chan W.-L.]的文章
[Abe-Ouchi A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。