CCPortal
DOI10.1007/s00382-019-04635-1
Uncertainty component estimates in transient climate projections: Precision of estimators in a single time or time series approach
Hingray B.; Blanchet J.; Evin G.; Vidal J.-P.
发表日期2019
ISSN0930-7575
起始页码2501
结束页码2516
卷号53期号:2020-05-06
英文摘要Quantifying model uncertainty and internal variability components in climate projections has been paid a great attention in the recent years. For multiple synthetic ensembles of climate projections, we compare the precision of uncertainty component estimates obtained respectively with the two Analysis of Variance (ANOVA) approaches mostly used in recent works: the popular Single Time approach (STANOVA), based on the data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the available simulation period. We show that the precision of all uncertainty estimates is higher when more members are used, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more precise than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3–5 times smaller than STANOVA ones. Except for STANOVA when less than three members is available, the precision is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the precision is low for QEANOVA to very low for STANOVA. In the most unfavorable configurations (small number of members, large internal variability), large over- or underestimation of uncertainty components is thus very likely. In a number of cases, the uncertainty analysis should thus be preferentially carried out with a time series approach or with a local-time series approach, applied to all predictions available in the temporal neighborhood of the target prediction lead time. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
英文关键词ANOVA; Climate projections; Internal variability; Model uncertainty; Precision of estimates; Scenario uncertainty; Uncertainty sources
语种英语
scopus关键词climate prediction; precision; scenario analysis; time series; uncertainty analysis; variance analysis
来源期刊Climate Dynamics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/146015
作者单位Univ. Grenoble Alpes, CNRS, IGE UMR 5001, Grenoble, 38000, France; Univ. Grenoble Alpes, Irstea, UR ETNA, Grenoble, 38000, France; Irstea, UR RiverLy, centre de Lyon-Villeurbanne, Villeurbanne, 69625, France
推荐引用方式
GB/T 7714
Hingray B.,Blanchet J.,Evin G.,et al. Uncertainty component estimates in transient climate projections: Precision of estimators in a single time or time series approach[J],2019,53(2020-05-06).
APA Hingray B.,Blanchet J.,Evin G.,&Vidal J.-P..(2019).Uncertainty component estimates in transient climate projections: Precision of estimators in a single time or time series approach.Climate Dynamics,53(2020-05-06).
MLA Hingray B.,et al."Uncertainty component estimates in transient climate projections: Precision of estimators in a single time or time series approach".Climate Dynamics 53.2020-05-06(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hingray B.]的文章
[Blanchet J.]的文章
[Evin G.]的文章
百度学术
百度学术中相似的文章
[Hingray B.]的文章
[Blanchet J.]的文章
[Evin G.]的文章
必应学术
必应学术中相似的文章
[Hingray B.]的文章
[Blanchet J.]的文章
[Evin G.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。