Climate Change Data Portal
DOI | 10.1007/s00382-019-05095-3 |
The impact of wintertime sea-ice anomalies on high surface heat flux events in the Iceland and Greenland Seas | |
Pope J.O.; Bracegirdle T.J.; Renfrew I.A.; Elvidge A.D. | |
发表日期 | 2020 |
ISSN | 0930-7575 |
起始页码 | 1937 |
结束页码 | 1952 |
卷号 | 54 |
英文摘要 | The gyres of the Iceland and Greenland Seas are regions of deep-water formation, driven by large ocean-to-atmosphere heat fluxes that have local maxima adjacent to the sea-ice edge. Recently these regions have experienced a dramatic loss of sea ice, including in winter, which begs the question have surface heat fluxes in the adjacent ocean gyres been affected? To address this a set of regional atmospheric climate model simulations has been run with prescribed sea ice and sea surface temperature fields. Three 20-year model experiments have been examined: Icemax, Icemed and Icemin, where the surface fields are set as the year with maximum, median and minimum sea-ice extents respectively. Under conditions of reduced sea-ice extent there is a 15% (19 W m−2) decrease in total wintertime heat fluxes in the Iceland Sea. In contrast, there is an 8% (9 W m−2) increase in heat fluxes in the Greenland Sea primarily due to higher local SSTs. These differences are manifest as changes in the magnitude of high heat flux events (such as cold air outbreaks). In the Iceland Sea, 76% of these events are lower in magnitude during reduced sea-ice conditions. In the Greenland Sea, 93% of these events are higher in magnitude during reduced sea-ice conditions as a result of higher SSTs coincident with retreating sea ice. So, in these experiments, the reduced wintertime sea-ice conditions force a different response in the two seas. In both gyres, large-scale atmospheric circulation patterns are key drivers of high heat flux events. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature. |
英文关键词 | Climate modelling; Greenland Sea; Iceland Sea; MetUM; Sea ice; Surface heat flux |
语种 | 英语 |
scopus关键词 | climate modeling; gyre; heat flux; sea ice; sea surface temperature; temperature anomaly; winter; Arctic Ocean; Greenland Sea; Iceland; Norwegian Sea |
来源期刊 | Climate Dynamics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/145610 |
作者单位 | British Antarctic Survey, Cambridge, United Kingdom; Met Office Hadley Centre, Met Office, FitzRoy Road, Exeter, United Kingdom; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom |
推荐引用方式 GB/T 7714 | Pope J.O.,Bracegirdle T.J.,Renfrew I.A.,et al. The impact of wintertime sea-ice anomalies on high surface heat flux events in the Iceland and Greenland Seas[J],2020,54. |
APA | Pope J.O.,Bracegirdle T.J.,Renfrew I.A.,&Elvidge A.D..(2020).The impact of wintertime sea-ice anomalies on high surface heat flux events in the Iceland and Greenland Seas.Climate Dynamics,54. |
MLA | Pope J.O.,et al."The impact of wintertime sea-ice anomalies on high surface heat flux events in the Iceland and Greenland Seas".Climate Dynamics 54(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。