CCPortal
DOI10.1016/j.atmosenv.2020.117713
Behaviour of individual VOCs in indoor environments: How ventilation affects emission from materials
Caron F.; Guichard R.; Robert L.; Verriele M.; Thevenet F.
发表日期2020
ISSN13522310
卷号243
英文摘要Indoor air quality is affected by both emissions of Volatile Organic Compounds (VOC) from materials and ventilation. The purpose of this paper is to provide a multi-scale analysis of the impact of ventilation on VOC emissions to highlight the individual behaviours of VOCs emitted from a wood particleboard. Emissions were studied in an experimental chamber by (i) assessing the effect of ventilation on emission rates and (ii) determining intrinsic parameters (Ki, C0,i, Di) describing the VOC mass transfer from the material to air. The overall assessment of the effect of ventilation indicated that the air change rate could significantly affect the behaviour of individual compounds. Typically, the formaldehyde emission rate increased from 214.6 to 274.2 μg.m−2.h−1 when air change rate varies from 2.5 to 5.5 h−1, whereas the air speed had no influence on emission rates for any VOC monitored. These results agree with the key emission parameters (partitioning and diffusion coefficients) which were higher for formaldehyde than those for other compounds. VOC diffusion related to VOC mass transfer from a material's surface to the surrounding air was the limiting step in VOC emission for the solid material studied, and should therefore be considered when developing ventilation strategies. © 2020 Elsevier Ltd
英文关键词Diffusion coefficient; Formaldehyde; Initial emittable concentration; Partitioning coefficient; Ventilation; VOC
语种英语
scopus关键词Air quality; Formaldehyde; Indoor air pollution; Mass transfer; Particulate emissions; Volatile organic compounds; Emission parameters; Formaldehyde emission; Individual behaviour; Intrinsic parameters; Multi scale analysis; Ventilation strategy; Volatile organic compound (VOC); Wood particleboards; Ventilation; acetaldehyde; acetone; butyraldehyde; formaldehyde; hexanal; pentane; propionaldehyde; terpene; volatile organic compound; air quality; emission; formaldehyde; indoor air; mass transfer; ventilation; volatile organic compound; air conditioning; air pollution; air quality; ambient air; Article; boundary layer; concentration at steady-state; diffusion coefficient; indoor environment; partition coefficient; priority journal; velocity; wood
来源期刊Atmospheric Environment
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/144906
作者单位French Institute of Research and Safety (INRS), Department of Process Engineering, Rue du Morvan, Vandoeuvre-lès-Nancy, 54519, France; IMT Lille Douai, Univ. Lille, SAGE, Lille, 59000, France
推荐引用方式
GB/T 7714
Caron F.,Guichard R.,Robert L.,et al. Behaviour of individual VOCs in indoor environments: How ventilation affects emission from materials[J],2020,243.
APA Caron F.,Guichard R.,Robert L.,Verriele M.,&Thevenet F..(2020).Behaviour of individual VOCs in indoor environments: How ventilation affects emission from materials.Atmospheric Environment,243.
MLA Caron F.,et al."Behaviour of individual VOCs in indoor environments: How ventilation affects emission from materials".Atmospheric Environment 243(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Caron F.]的文章
[Guichard R.]的文章
[Robert L.]的文章
百度学术
百度学术中相似的文章
[Caron F.]的文章
[Guichard R.]的文章
[Robert L.]的文章
必应学术
必应学术中相似的文章
[Caron F.]的文章
[Guichard R.]的文章
[Robert L.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。