Climate Change Data Portal
DOI | 10.5194/acp-19-12175-2019 |
Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol | |
Nichman L.; Wolf M.; Davidovits P.; Onasch T.B.; Zhang Y.; Worsnop D.R.; Bhandari J.; Mazzoleni C.; Cziczo D.J. | |
发表日期 | 2019 |
ISSN | 16807316 |
起始页码 | 12175 |
结束页码 | 12194 |
卷号 | 19期号:19 |
英文摘要 | Soot and black carbon (BC) particles are generated in the incomplete combustion of fossil fuels, biomass, and biofuels. These airborne particles affect air quality, human health, aerosol-cloud interactions, precipitation formation, and climate. At present, the climate effects of BC particles are not well understood. Their role in cloud formation is obscured by their chemical and physical variability and by the internal mixing states of these particles with other compounds. Ice nucleation in field studies is often difficult to interpret. Nonetheless, most field studies seem to suggest that BC particles are not efficient ice-nucleating particles (INPs). On the other hand, laboratory measurements show that in some cases, BC particles can be highly active INPs under certain conditions. By working with well-characterized BC particles, our aim is to systematically establish the factors that govern the ice nucleation activity of BC. The current study focuses on laboratory measurements of the effectiveness of BC-containing aerosol in the formation of ice crystals in temperature and ice supersaturation conditions relevant to cirrus clouds. We examine ice nucleation on BC particles under watersubsaturated cirrus cloud conditions, commonly understood as deposition-mode ice nucleation. We study a series of wellcharacterized commercial carbon black particles with varying morphologies and surface chemistries as well as ethylene flame-generated combustion soot. The carbon black particles used in this study are proxies for atmospherically relevant BC aerosols. These samples were characterized by electron microscopy, mass spectrometry, and optical scattering measurements. Ice nucleation activity was systematically examined in temperature and saturation conditions in the ranges of 217 ≤ T ≤ 235 K and 1:0 ≤ Sice ≤ 1:5 and 0:59 ≤ Swater ≤ 0:98, respectively, using a SPectrometer for Ice Nuclei (SPIN) instrument, which is a continuous-flow diffusion chamber coupled with instrumentation to measure light scattering and polarization. To study the effect of coatings on INPs, the BC-containing particles were coated with organic acids found in the atmosphere, namely stearic acid, cis-pinonic acid, and oxalic acid. The results show significant variations in ice nucleation activity as a function of size, morphology, and surface chemistry of the BC particles. The measured ice nucleation activity dependencies on temperature, supersaturation conditions, and the physicochemical properties of the BC particles are consistent with an ice nucleation mechanism of pore condensation followed by freezing. Coatings and surface oxidation modify the initial formation efficiency of pristine ice crystals on BC-containing aerosol. Depending on the BC mate rial and the coating, both inhibition and enhancement in INP activity were observed. Our measurements at low temperatures complement published data and highlight the capability of some BC particles to nucleate ice under low ice supersaturation conditions. These results are expected to help refine theories relating to soot INP activation in the atmosphere. © 2019 Author(s). |
语种 | 英语 |
scopus关键词 | aerosol; black carbon; ice crystal; laboratory method; nucleation; soot |
来源期刊 | Atmospheric Chemistry and Physics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/144756 |
作者单位 | Department of Chemistry, Boston College, Chestnut Hill, MA 02467, United States; Aerodyne Research Inc., Billerica, MA 01821, United States; Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Physics and Atmospheric Sciences, Michigan Technological University, Houghton, MI 49931, United States; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Flight Research Laboratory, National Research Council of Canada, Ottawa, ON K1V-9B4, Canada |
推荐引用方式 GB/T 7714 | Nichman L.,Wolf M.,Davidovits P.,et al. Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol[J],2019,19(19). |
APA | Nichman L..,Wolf M..,Davidovits P..,Onasch T.B..,Zhang Y..,...&Cziczo D.J..(2019).Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol.Atmospheric Chemistry and Physics,19(19). |
MLA | Nichman L.,et al."Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol".Atmospheric Chemistry and Physics 19.19(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。