Climate Change Data Portal
DOI | 10.5194/acp-19-2063-2019 |
Seasonal and diurnal variability in O3; black carbon; and CO measured at the Rwanda Climate Observatory | |
Langley Dewitt H.; Gasore J.; Rupakheti M.; Potter K.E.; Prinn R.G.; De Dieu Ndikubwimana J.; Nkusi J.; Safari B. | |
发表日期 | 2019 |
ISSN | 16807316 |
起始页码 | 2063 |
结束页码 | 2078 |
卷号 | 19期号:3 |
英文摘要 | Air pollution is understudied in sub-Saharan Africa, resulting in a gap in the scientific understanding of emissions, atmospheric processes, and impacts of air pollutants in this region. The Rwanda Climate Observatory, a joint partnership between MIT and the government of Rwanda, has been measuring ambient concentrations of key long-lived greenhouse gases and the short-lived climate-forcing pollutants CO2, CO, CH4, black carbon (BC), and O3 with state-of-the-art instruments on the summit of Mt. Mugogo (1.586ĝ S, 29.566ĝ E; 2590 m above sea level) since May 2015. Rwanda is a small, mountainous, and densely populated country in equatorial East Africa, currently undergoing rapid development but still at less than 20 % urbanization. Black carbon concentrations during Rwanda's two dry seasons (December-January-February, DJF, and June-July-August, JJA), which coincide with the two regional biomass burning seasons, are higher at Mt. Mugogo than in major European cities with daily values (24 h) during the dry season of around 5 μg mĝ'3 (daily average concentrations ranging from less than 0.1 to over 17 μg mĝ'3 for the entire measurement period). BC baseline concentrations during biomass burning seasons are loosely correlated with fire radiative power data for the region acquired with a MODIS satellite instrument. The position and meteorology of Rwanda is such that the emissions transported from both the northern and southern African biomass burning seasons affect BC, CO, and O3 concentrations in Rwanda. Spectral aerosol absorption measured with a dual-spot Aethalometer varies seasonally due to changes in types of fuel burned and the direction of pollution transport to the site. Ozone concentrations peaked during Rwanda's dry seasons (daily measured maximum of 70 ppbv). The understanding and quantification of the percent contributions of regional and local (beyond large-scale biomass) emissions is essential to guide policy in the region. During the rainy seasons, local emitting activities (e.g., cooking, transportation, trash burning) remain steady, regional biomass burning is low, and transport distances are shorter as rainout of pollution occurs regularly. Thus, local pollution at Mugogo can be estimated during this time period and was found to account for up to 35 % of annual average BC measured. Our measurements indicate that air pollution is a current and growing problem in equatorial East Africa. © 2019. This work is distributed under the Creative Commons Attribution 4.0 License. |
语种 | 英语 |
scopus关键词 | atmospheric pollution; black carbon; carbon emission; carbon monoxide; diurnal variation; greenhouse gas; ozone; seasonal variation; Rwanda |
来源期刊 | Atmospheric Chemistry and Physics |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/144640 |
作者单位 | Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Institute for Advanced Sustainability Studies (IASS), Potsdam, Germany; Climate Secretariat, Ministry of Education, Kigali, Rwanda; Physics Department, University of Rwanda, Kigali, Rwanda |
推荐引用方式 GB/T 7714 | Langley Dewitt H.,Gasore J.,Rupakheti M.,et al. Seasonal and diurnal variability in O3; black carbon; and CO measured at the Rwanda Climate Observatory[J],2019,19(3). |
APA | Langley Dewitt H..,Gasore J..,Rupakheti M..,Potter K.E..,Prinn R.G..,...&Safari B..(2019).Seasonal and diurnal variability in O3; black carbon; and CO measured at the Rwanda Climate Observatory.Atmospheric Chemistry and Physics,19(3). |
MLA | Langley Dewitt H.,et al."Seasonal and diurnal variability in O3; black carbon; and CO measured at the Rwanda Climate Observatory".Atmospheric Chemistry and Physics 19.3(2019). |
条目包含的文件 | ||||||
条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。