CCPortal
DOI10.5194/acp-19-7105-2019
Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations
Sarangi C.; Qian Y.; Rittger K.; Bormann K.J.; Liu Y.; Wang H.; Wan H.; Lin G.; Painter T.H.
发表日期2019
ISSN16807316
起始页码7105
结束页码7128
卷号19期号:10
英文摘要Light-absorbing particles (LAPs), mainly dust and black carbon, can significantly impact snowmelt and regional water availability over high-mountain Asia (HMA). In this study, for the first time, online aerosol-snow interactions are enabled and a fully coupled chemistry Weather Research and Forecasting (WRF-Chem) regional model is used to simulate LAP-induced radiative forcing on snow surfaces in HMA at relatively high spatial resolution (12km, WRF-HR) compared with previous studies. Simulated macro- and microphysical properties of the snowpack and LAP-induced snow darkening are evaluated against new spatially and temporally complete datasets of snow-covered area, grain size, and impurity-induced albedo reduction over HMA. A WRF-Chem quasi-global simulation with the same configuration as WRF-HR but a coarser spatial resolution (1, WRF-CR) is also used to illustrate the impact of spatial resolution on simulations of snow properties and aerosol distribution over HMA. Due to a more realistic representation of terrain slopes over HMA, the higher-resolution model (WRF-HR) shows significantly better performance in simulating snow area cover, duration of snow cover, snow albedo and snow grain size over HMA, as well as an evidently better atmospheric aerosol loading and mean LAP concentration in snow. However, the differences in albedo reduction from model and satellite retrievals is large during winter due to associated overestimation in simulated snow fraction. It is noteworthy that Himalayan snow cover has high magnitudes of LAP-induced snow albedo reduction (4%-8%) in pre-monsoon seasons (both from WRF-HR and satellite estimates), which induces a snow-mediated radiative forcing of 1/430-50W m-2. As a result, the Himalayas (specifically the western Himalayas) hold the most vulnerable glaciers and mountain snowpack to the LAP-induced snow darkening effect within HMA. In summary, coarse spatial resolution and absence of snow-aerosol interactions over the Himalayan cryosphere will result in significant underestimation of aerosol effects on snow melting and regional hydroclimate. © Author(s) 2019.
语种英语
scopus关键词aerosol; albedo; atmospheric chemistry; mountain region; radiative forcing; satellite data; snow cover; spatial resolution; weather forecasting; Himalayas
来源期刊Atmospheric Chemistry and Physics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/144377
作者单位Pacific Northwest National Laboratory, Richland, WA, United States; Institute of Arctic and Alpine Research, Boulder, CO, United States; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
推荐引用方式
GB/T 7714
Sarangi C.,Qian Y.,Rittger K.,et al. Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations[J],2019,19(10).
APA Sarangi C..,Qian Y..,Rittger K..,Bormann K.J..,Liu Y..,...&Painter T.H..(2019).Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations.Atmospheric Chemistry and Physics,19(10).
MLA Sarangi C.,et al."Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations".Atmospheric Chemistry and Physics 19.10(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sarangi C.]的文章
[Qian Y.]的文章
[Rittger K.]的文章
百度学术
百度学术中相似的文章
[Sarangi C.]的文章
[Qian Y.]的文章
[Rittger K.]的文章
必应学术
必应学术中相似的文章
[Sarangi C.]的文章
[Qian Y.]的文章
[Rittger K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。