Climate Change Data Portal
DOI | 10.5194/acp-19-10087-2019 |
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative | |
Lamy K.; Portafaix T.; Josse B.; Brogniez C.; Godin-Beekmann S.; Bencherif H.; Revell L.; Akiyoshi H.; Bekki S.; Hegglin M.I.; Jöckel P.; Kirner O.; Liley B.; Marecal V.; Morgenstern O.; Stenke A.; Zeng G.; Luke Abraham N.; Archibald A.T.; Butchart N.; Chipperfield M.P.; Di Genova G.; Deushi M.; Dhomse S.S.; Hu R.-M.; Kinnison D.; Kotkamp M.; McKenzie R.; Michou M.; O'Connor F.M.; Oman L.D.; Pitari G.; Plummer D.A.; Pyle J.; Rozanov E.; Saint-Martin D.; Sudo K.; Tanaka T.Y.; Visioni D.; Yoshida K. | |
发表日期 | 2019 |
ISSN | 16807316 |
起始页码 | 10087 |
结束页码 | 10110 |
卷号 | 19期号:15 |
英文摘要 | We have derived values of the ultraviolet index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between-5:9 % and 10.6 %. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2 %-4 %) in the tropical belt (30° N-30° S). For the mid-latitudes, we observed a 1.8 % to 3.4 % increase in the Southern Hemisphere for RCPs 2.6, 4.5 and 6.0 and found a 2.3 % decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 % to 5.5 % for RCPs 2.6, 4.5 and 6.0 and they are lower by 7.9 % for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does. © 2019 Author(s). |
语种 | 英语 |
scopus关键词 | aerosol; air temperature; atmospheric chemistry; atmospheric modeling; climate modeling; climate prediction; Northern Hemisphere; optical depth; ozone; Southern Hemisphere; ultraviolet radiation |
来源期刊 | Atmospheric Chemistry and Physics |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/144220 |
作者单位 | LACy, Laboratoire de l'Atmosphère et des Cyclones, UMR 8105 CNRS, Université de la Réunion, Météo-France, Saint-Denis de La Réunion, France; Centre National de Recherches Météorologiques (CNRM) UMR 3589, Météo-France/CNRS, Toulouse, France; Laboratoire d'Optique Atmosphérique (LOA), Université de Lille, Faculté des Sciences et Technologies, Villeneuve d'Ascq, France; Laboratoire Atmosphères Milieux, Observations Spatiales, Service d'Aéronomie (LATMOS), CNRS, Institut Pierre Simon Laplace, Pierre et Marie Curie University, Paris, France; School of Chemistry and Physics, University of KwaZulu Natal, Durban, South Africa; Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland; Bodeker Scientific, Christchurch, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand; National Institute of Environmental Studies (NIES), Tsukuba, Japan; Department of Meteorology, University of Reading, Reading, United Kingdom; Institut für Physik d... |
推荐引用方式 GB/T 7714 | Lamy K.,Portafaix T.,Josse B.,et al. Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative[J],2019,19(15). |
APA | Lamy K..,Portafaix T..,Josse B..,Brogniez C..,Godin-Beekmann S..,...&Yoshida K..(2019).Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative.Atmospheric Chemistry and Physics,19(15). |
MLA | Lamy K.,et al."Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative".Atmospheric Chemistry and Physics 19.15(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。