CCPortal
DOI10.5194/acp-20-3623-2020
Molecular markers of biomass burning and primary biological aerosols in urban Beijing: Size distribution and seasonal variation
Xu S.; Ren L.; Lang Y.; Hou S.; Ren H.; Wei L.; Wu L.; Deng J.; Hu W.; Pan X.; Sun Y.; Wang Z.; Su H.; Cheng Y.; Fu P.
发表日期2020
ISSN1680-7316
起始页码3623
结束页码3644
卷号20期号:6
英文摘要Biomass burning and primary biological aerosol particles account for an important part of urban aerosols. Floods of studies have been conducted on the chemical compositions of fine aerosols (PM2.5) in megacities where the haze pollution is one of the severe environmental issues in China. However, little is known about their size distributions in atmospheric aerosols in the urban boundary layer. Here, size-segregated aerosol samples were collected in Beijing during haze and clear days from April 2017 to January 2018. Three anhydrosugars, six primary saccharides and four sugar alcohols in these samples were identified and quantified by gas chromatography/mass spectrometry (GC/MS). Higher concentrations of a biomass burning tracer, levoglucosan, were detected in autumn and winter than in other seasons. Sucrose, glucose, fructose, mannitol and arabitol were more abundant in the bloom and glowing seasons. A particularly high level of trehalose was found in spring, which was largely associated with the Asian dust outflows. Anhydrosugars, xylose, maltose, inositol and erythritol are mainly present in the fine mode (<2.1μm), while the others showed the coarse-mode preference. The concentrations of measured tracers of biomass burning particles and primary biological particles in the haze events were higher than those in the non-hazy days, with enrichment factors of 2-10. Geometric mean diameters (GMDs) of molecular markers of biomass burning and primary biological aerosols showed that there was no significant difference in the coarse mode (>2.1μm) between the haze and non-haze samples, while a size shift towards large particles and large GMDs in the fine fraction (<2.1μm) was detected during the hazy days, which highlights that the stable meteorological conditions with high relative humidity in urban Beijing may favor the condensation of organics onto coarse particles.The contributions of reconstructed primary organic carbon (POC) by tracer-based methods from plant debris, fungal spores and biomass burning to aerosol OC in the total-mode particles were in the ranges of 0.09 %-0.30 % (on average 0.21 %), 0.13 %-1.0 % (0.38 %) and 1.2 %-7.5 % (4.5 %), respectively. This study demonstrates that the contribution of biomass burning was significant in Beijing throughout the whole year with the predominance in the fine mode, while the contributions of plant debris and fungal spores dominated in spring and summer in the coarse mode, especially in sizes >5.8μm. Our observations demonstrate that the sources, abundance and chemical composition of urban aerosol particles are strongly size dependent in Beijing, which is important to better understand the environmental and health effects of urban aerosols and should be considered in air quality and climate models. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
语种英语
scopus关键词aerosol; biomarker; biomass burning; boundary layer; concentration (composition); haze; mass spectrometry; primary production; seasonal variation; size distribution; urban atmosphere; Beijing [Beijing (ADS)]; Beijing [China]; China
来源期刊Atmospheric Chemistry and Physics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/141454
作者单位Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; Lapc, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
推荐引用方式
GB/T 7714
Xu S.,Ren L.,Lang Y.,et al. Molecular markers of biomass burning and primary biological aerosols in urban Beijing: Size distribution and seasonal variation[J],2020,20(6).
APA Xu S..,Ren L..,Lang Y..,Hou S..,Ren H..,...&Fu P..(2020).Molecular markers of biomass burning and primary biological aerosols in urban Beijing: Size distribution and seasonal variation.Atmospheric Chemistry and Physics,20(6).
MLA Xu S.,et al."Molecular markers of biomass burning and primary biological aerosols in urban Beijing: Size distribution and seasonal variation".Atmospheric Chemistry and Physics 20.6(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu S.]的文章
[Ren L.]的文章
[Lang Y.]的文章
百度学术
百度学术中相似的文章
[Xu S.]的文章
[Ren L.]的文章
[Lang Y.]的文章
必应学术
必应学术中相似的文章
[Xu S.]的文章
[Ren L.]的文章
[Lang Y.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。