Climate Change Data Portal
DOI | 10.5194/acp-20-7373-2020 |
Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea | |
Gehring J.; Oertel A.; Vignon E.; Jullien N.; Besic N.; Berne A. | |
发表日期 | 2020 |
ISSN | 1680-7316 |
起始页码 | 7373 |
结束页码 | 7392 |
卷号 | 20期号:12 |
英文摘要 | On 28 February 2018, 57span classCombining double low line"inline-formula"mm/span of precipitation associated with a warm conveyor belt (WCB) fell within 21span classCombining double low line"inline-formula"h/span over South Korea. To investigate how the large-scale circulation influenced the microphysics of this intense precipitation event, we used radar measurements, snowflake photographs and radiosounding data from the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018). The WCB was identified with trajectories computed with analysis wind fields from the Integrated Forecast System global atmospheric model. The WCB was collocated with a zone of enhanced wind speed of up to 45span classCombining double low line"inline-formula"m s-1/span at 6500span classCombining double low line"inline-formula"m/spana.s.l., as measured by a radiosonde and a Doppler radar. Supercooled liquid water (SLW) with concentrations exceeding 0.2span classCombining double low line"inline-formula"g kg-1/span was produced during the rapid ascent within the WCB. During the most intense precipitation period, vertical profiles of polarimetric radar variables show a peak and subsequent decrease in differential reflectivity as aggregation starts. Below the peak in differential reflectivity, the specific differential phase shift continues to increase, indicating early riming of oblate crystals and secondary ice generation. We hypothesise that the SLW produced in the WCB led to intense riming. Moreover, embedded updraughts in the WCB and turbulence at its lower boundary enhanced aggregation by increasing the probability of collisions between particles. This suggests that both aggregation and riming occurred prominently in this WCB. This case study shows how the large-scale atmospheric flow of a WCB provides ideal conditions for rapid precipitation growth involving SLW production, riming and aggregation. Future microphysical studies should also investigate the synoptic conditions to understand how observed processes in clouds are related to large-scale circulation. © 2020 Copernicus GmbH. All rights reserved. |
语种 | 英语 |
scopus关键词 | atmospheric circulation; atmospheric dynamics; atmospheric modeling; cloud microphysics; formation mechanism; precipitation assessment; probability; rime; snow; synoptic meteorology; wind field; wind velocity; South Korea |
来源期刊 | Atmospheric Chemistry and Physics |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/141257 |
作者单位 | Environmental Remote Sensing Laboratory (LTE), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Atmospheric and Climate Science (IAC), Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland; Department of Geosciences, University of Fribourg, Fribourg, Switzerland; Centre Météorologie Radar, Météo France, Toulouse, France |
推荐引用方式 GB/T 7714 | Gehring J.,Oertel A.,Vignon E.,et al. Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea[J],2020,20(12). |
APA | Gehring J.,Oertel A.,Vignon E.,Jullien N.,Besic N.,&Berne A..(2020).Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea.Atmospheric Chemistry and Physics,20(12). |
MLA | Gehring J.,et al."Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea".Atmospheric Chemistry and Physics 20.12(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。