Climate Change Data Portal
DOI | 10.5194/acp-20-10459-2020 |
Evolution of NO3 reactivity during the oxidation of isoprene | |
Dewald P.; M. Liebmann J.; Friedrich N.; Shenolikar J.; Schuladen J.; Rohrer F.; Reimer D.; Tillmann R.; Novelli A.; Cho C.; Xu K.; Holzinger R.; Bernard F.; Zhou L.; Mellouki W.; S. Brown S.; Fuchs H.; Lelieveld J.; N. Crowley J. | |
发表日期 | 2020 |
ISSN | 1680-7316 |
起始页码 | 10459 |
结束页码 | 10475 |
卷号 | 20期号:17 |
英文摘要 | In a series of experiments in an atmospheric simulation chamber (SAPHIR,1 Forschungszentrum Julich, Germany), NO3 reactivity (kNO3 ) resulting from the reaction of NO3 with isoprene and stable trace gases formed as products was measured directly using a flow tube reactor coupled to a cavity ring-down spectrometer (FT-CRDS). The experiments were carried out in both dry and humid air with variation of the initial mixing ratios of ozone (50-100 ppbv), isoprene (3-22 ppbv) and NO2 (5-30 ppbv). kNO3 was in excellent agreement with values calculated from the isoprene mixing ratio and the rate coefficient for the reaction of NO3 with isoprene. This result serves to confirm that the FT-CRDS returns accurate values of kNO3 even at elevated NO2 concentrations and to show that reactions of NO3 with stable reaction products like non-radical organic nitrates do not contribute significantly to NO3 reactivity during the oxidation of isoprene. A comparison of kNO3 with NO3 reactivities calculated from NO3 mixing ratios and NO3 production rates suggests that organic peroxy radicals and HO2 account for 50% of NO3 losses. This contradicts predictions based on numerical simulations using the Master Chemical Mechanism (MCM version 3.3.1) unless the rate coefficient for reaction between NO3 and isoprene-derived RO2 is roughly doubled to 51012 cm3 molecule1 s1. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. |
语种 | 英语 |
scopus关键词 | atmospheric chemistry; concentration (composition); isoprene; mixing ratio; nitrate; oxidation; trace gas |
来源期刊 | Atmospheric Chemistry and Physics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/141113 |
作者单位 | Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, Mainz, 55128, Germany; Institute of Energy and Climate Research, IEK-8 Troposphere, Forschungszentrum Jülich GmbH, Jülich, 52428, Germany; Institute for Marine and Atmospheric Research, Imau, Utrecht University, Utrecht, Netherlands; Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Cnrs (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans CEDEX 2, 45071, France; Noaa Chemical Sciences Laboratory, 325 Broadway, Boulder, CO 80305, United States; Department of Chemistry, University of Colorado Boulder, Boulder, CO 80209, United States; Now At: Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Centre National de la Recherche Scientifique (CNRS), Université d'Orléans, Observatoire des Sciences de l'Univers en Région Centre - Val de Loire (OSUC), Orléans, France |
推荐引用方式 GB/T 7714 | Dewald P.,M. Liebmann J.,Friedrich N.,et al. Evolution of NO3 reactivity during the oxidation of isoprene[J],2020,20(17). |
APA | Dewald P..,M. Liebmann J..,Friedrich N..,Shenolikar J..,Schuladen J..,...&N. Crowley J..(2020).Evolution of NO3 reactivity during the oxidation of isoprene.Atmospheric Chemistry and Physics,20(17). |
MLA | Dewald P.,et al."Evolution of NO3 reactivity during the oxidation of isoprene".Atmospheric Chemistry and Physics 20.17(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。