Climate Change Data Portal
DOI | 10.5194/acp-20-10545-2020 |
Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79°N | |
Leaitch W.R.; Kodros J.K.; Willis M.D.; Hanna S.; Schulz H.; Andrews E.; Bozem H.; Burkart J.; Hoor P.; Kolonjari F.; Ogren J.A.; Sharma S.; Si M.; Von Salzen K.; Bertram A.K.; Herber A.; Abbatt J.P.D.; Pierce J.R. | |
发表日期 | 2020 |
ISSN | 1680-7316 |
起始页码 | 10545 |
结束页码 | 10563 |
卷号 | 20期号:17 |
英文摘要 | Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient ( σsp) and light absorption coefficient ( σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80 N. Here, relationships among vertically distributed aerosol optical properties ( σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4 N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing System (GEOS) model, GEOS-Chem, coupled with theTwO-Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem-TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm-1, which represent 98 % of the observed σsp, because the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g-1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (13.6 and 9.1 m2 g-1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the observations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Median values of the measured σap, rBC and the organic component of particles all increase by a factor of 1.8±0.1, going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900and 600 hPa. The differences between modelled and observed optical properties follow the same trend as thedifferences between the modelled and observed concentrations of the carbonaceous components (black and organic). Model-observation discrepancies may be mostly due to the modelled ejection of biomassburning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of Mm-1. The large uncertainties in measuring optical properties and BC, and the large differences between measured and modelledvalues here and in the literature, argue for improved measurements of BC and light absorption by BCand more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic. © 2020 Author(s). |
语种 | 英语 |
scopus关键词 | aerosol property; albedo; black carbon; light scattering; optical property; spring (season); vertical profile; Arctic; Canada |
来源期刊 | Atmospheric Chemistry and Physics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/141106 |
作者单位 | Environment and Climate Change Canada, Toronto, ON, Canada; Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States; Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada; Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; CIRES, University of Colorado, Boulder, CO, United States; Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany; National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, United States; Environment and Climate Change Canada, Victoria, BC, Canada; Institute of Chemical Engineering Sciences (ICE), Foundation for Research and Technology (FORTH), Patras, Greece; Lawrence Berkeley National Laboratory, Chemical Sciences Division, University of California - Berkeley, Berkeley, CA, United States; Environment and Climate Change Canada, Victoria, BC, Canada; Aerosol Physics and Enviro... |
推荐引用方式 GB/T 7714 | Leaitch W.R.,Kodros J.K.,Willis M.D.,et al. Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79°N[J],2020,20(17). |
APA | Leaitch W.R..,Kodros J.K..,Willis M.D..,Hanna S..,Schulz H..,...&Pierce J.R..(2020).Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79°N.Atmospheric Chemistry and Physics,20(17). |
MLA | Leaitch W.R.,et al."Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79°N".Atmospheric Chemistry and Physics 20.17(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。