CCPortal
DOI10.1126/science.abc0473
Rapid implementation of mobile technology for real-time epidemiology of COVID-19
Drew D.A.; Nguyen L.H.; Steves C.J.; Menni C.; Freydin M.; Varsavsky T.; Sudre C.H.; Jorge Cardoso M.; Ourselin S.; Wolf J.; Spector T.D.; Chan A.T.; COPE Consortium
发表日期2020
ISSN0036-8075
起始页码1362
结束页码1367
卷号368期号:6497
英文摘要The rapid pace of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents challenges to the robust collection of population-scale data to address this global health crisis. We established the COronavirus Pandemic Epidemiology (COPE) Consortium to unite scientists with expertise in big data research and epidemiology to develop the COVID Symptom Study, previously known as the COVID Symptom Tracker, mobile application. This application-which offers data on risk factors, predictive symptoms, clinical outcomes, and geographical hotspots-was launched in the United Kingdom on 24 March 2020 and the United States on 29 March 2020 and has garnered more than 2.8 million users as of 2 May 2020. Our initiative offers a proof of concept for the repurposing of existing approaches to enable rapidly scalable epidemiologic data collection and analysis, which is critical for a data-driven response to this public health challenge. © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
关键词data assimilationepidemiologypublic healthreal timerisk factorsevere acute respiratory syndromeviral diseaseUnited KingdomUnited StatesCoronavirusSARS coronavirusBetacoronavirusCoronavirus infectiondevicesglobal healthhumaninformation processinginternational cooperationmobile applicationpandemicprocedurestheoretical modelUnited KingdomUnited Statesvirus pneumoniaBetacoronavirusBig DataCoronavirus InfectionsData CollectionGlobal HealthHumansInternational CooperationMobile ApplicationsModels, TheoreticalPandemicsPneumonia, ViralUnited KingdomUnited States
语种英语
来源机构Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/133421
推荐引用方式
GB/T 7714
Drew D.A.,Nguyen L.H.,Steves C.J.,et al. Rapid implementation of mobile technology for real-time epidemiology of COVID-19[J]. Science,2020,368(6497).
APA Drew D.A..,Nguyen L.H..,Steves C.J..,Menni C..,Freydin M..,...&COPE Consortium.(2020).Rapid implementation of mobile technology for real-time epidemiology of COVID-19.,368(6497).
MLA Drew D.A.,et al."Rapid implementation of mobile technology for real-time epidemiology of COVID-19".368.6497(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Drew D.A.]的文章
[Nguyen L.H.]的文章
[Steves C.J.]的文章
百度学术
百度学术中相似的文章
[Drew D.A.]的文章
[Nguyen L.H.]的文章
[Steves C.J.]的文章
必应学术
必应学术中相似的文章
[Drew D.A.]的文章
[Nguyen L.H.]的文章
[Steves C.J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。