CCPortal
DOI10.1111/gbi.12385
In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction
Marin-Carbonne J.; Busigny V.; Miot J.; Rollion-Bard C.; Muller E.; Drabon N.; Jacob D.; Pont S.; Robyr M.; Bontognali T.R.R.; François C.; Reynaud S.; Van Zuilen M.; Philippot P.
发表日期2020
ISSN14724677
起始页码306
结束页码325
卷号18期号:3
英文摘要On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28- to 3.26-Gyr-old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of −1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass-independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass-independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro-organisms closely related to the last common ancestor had the ability to reduce Fe(III). © 2020 The Authors. Geobiology published by John Wiley & Sons Ltd.
关键词bacteriumbiogeochemical cyclebiogeochemistrycommon ancestrygeochemistrygeological recordmicrobial activitymicrobial communitymineralogyphylogeneticspyritestable isotopetrace elementBarberton Greenstone BeltSouth Africa
语种英语
来源机构Geobiology
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/133186
推荐引用方式
GB/T 7714
Marin-Carbonne J.,Busigny V.,Miot J.,et al. In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction[J]. Geobiology,2020,18(3).
APA Marin-Carbonne J..,Busigny V..,Miot J..,Rollion-Bard C..,Muller E..,...&Philippot P..(2020).In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction.,18(3).
MLA Marin-Carbonne J.,et al."In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction".18.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marin-Carbonne J.]的文章
[Busigny V.]的文章
[Miot J.]的文章
百度学术
百度学术中相似的文章
[Marin-Carbonne J.]的文章
[Busigny V.]的文章
[Miot J.]的文章
必应学术
必应学术中相似的文章
[Marin-Carbonne J.]的文章
[Busigny V.]的文章
[Miot J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。