CCPortal
DOI10.1016/j.foreco.2020.117999
Limited water availability did not protect poplar saplings from water use efficiency reduction under elevated ozone
Xu Y.; Feng Z.; Shang B.; Yuan X.; Tarvainen L.
发表日期2020
ISSN0378-1127
卷号462
英文摘要Elevated ground-level ozone (O3) concentrations decrease photosynthetic biochemistry more than stomatal conductance (gs), leading to an overall reduction in leaf-scale water use efficiency (WUE). Global warming is expected to lead to more severe and frequent droughts resulting in stomatal closure, increased WUE, and potentially in reduced plant O3 uptake and damage. It is currently unclear how the physiological responses to O3 and water limitation interact to affect overall leaf WUE and how these WUE responses might affect ecosystem productivity. In this study, we used open top chambers to expose O3-sensitive poplar saplings to elevated O3 (E-O3) and limited water availability to explore the individual and interactive effects of these stressors on WUE. We found that leaf-scale intrinsic water-use efficiency based on gas exchange measurements (iWUEge) decreased under E-O3 due to significantly reduced photosynthetic capacity, mesophyll conductance and apparent quantum yield, while gs was not affected by the treatment. Leaf-scale iWUEge and intrinsic WUE based on isotope measurements (iWUEiso) increased in the plants receiving less water due to higher photosynthetic capacities and lower transpiration rates indicated by δ18O measurements. The overall plant growth (total number of leaves, height, stem diameter and projected area of individual leaf) was significantly reduced under low water supply. Elevated O3 resulted in significant leaf senescence, but had no other significant main effect on morphological variables. Reduced water availability prevented O3-induced decreases in leaf mass per area and increases in leaf loss. No other significant O3-water availability interactions were detected in the measured physiological or morphological variables. Our results thus suggest that drought conditions will not prevent O3 damage to photosynthetic biochemistry in poplar and that high O3 concentrations will decrease leaf-scale iWUEge regardless of future changes in plant water availability. © 2020 Elsevier B.V.
关键词BiochemistryCottonDroughtEfficiencyForestryGlobal warmingOzonePhotosynthesisPhysiological modelsPhysiologyPlant shutdownsWater supplyMesophyll conductancePopulus deltoidesStomatal conductanceWater availabilityWater use efficiencyPlants (botany)biochemistryconcentration (composition)dicotyledondroughtgrowthozonephotosynthesisphysiological responsesaplingstomatal conductancetranspirationwater availabilitywater chemistrywater use efficiencyBiochemistryCottonDroughtEfficiencyForestryOzonePopulus deltoides
语种英语
来源机构Forest Ecology and Management
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/132929
推荐引用方式
GB/T 7714
Xu Y.,Feng Z.,Shang B.,et al. Limited water availability did not protect poplar saplings from water use efficiency reduction under elevated ozone[J]. Forest Ecology and Management,2020,462.
APA Xu Y.,Feng Z.,Shang B.,Yuan X.,&Tarvainen L..(2020).Limited water availability did not protect poplar saplings from water use efficiency reduction under elevated ozone.,462.
MLA Xu Y.,et al."Limited water availability did not protect poplar saplings from water use efficiency reduction under elevated ozone".462(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu Y.]的文章
[Feng Z.]的文章
[Shang B.]的文章
百度学术
百度学术中相似的文章
[Xu Y.]的文章
[Feng Z.]的文章
[Shang B.]的文章
必应学术
必应学术中相似的文章
[Xu Y.]的文章
[Feng Z.]的文章
[Shang B.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。