Climate Change Data Portal
DOI | 10.5194/acp-20-6707-2020 |
Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI-MODIS | |
De Graaf M.; Schulte R.; Peers F.; Waquet F.; Gijsbert Tilstra L.; Stammes P. | |
发表日期 | 2020 |
ISSN | 16807316 |
起始页码 | 6707 |
结束页码 | 6723 |
卷号 | 20期号:11 |
英文摘要 | The direct radiative effect (DRE) of aerosols above clouds has been found to be significant over the south-east Atlantic Ocean during the African biomass burning season due to elevated smoke layers absorbing radiation above the cloud deck. So far, global climate models have been unsuccessful in reproducing the high DRE values measured by various satellite instruments. Meanwhile, the radiative effects by aerosols have been identified as the largest source of uncertainty in global climate models. In this paper, three independent satellite datasets of DRE during the biomass burning season in 2006 are compared to constrain the south-east Atlantic radiation budget. The DRE of aerosols above clouds is derived from the spectrometer SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the polarimeter Polarization and Directionality of the Earth's Reflectances (POLDER), and collocated measurements by the spectrometer Ozone Monitoring Instrument (OMI) and the imager Moderate Resolution Imaging Spectroradiometer (MODIS). All three datasets confirm the high DRE values during the biomass season, underlining the relevance of local aerosol effects. Differences between the instruments can be attributed mainly to sampling issues. When these are accounted for, the remaining differences can be explained by a higher cloud optical thickness (COT) derived from POLDER compared to the other instruments and a neglect of aerosol optical thickness (AOT) at shortwave infrared (SWIR) wavelengths in the method used for SCIAMACHY and OMI-MODIS. The higher COT from POLDER by itself can explain the difference found in DRE between POLDER and the other instruments. The AOT underestimation is mainly evident at high values of the aerosol DRE and accounts for about a third of the difference between POLDER and OMI-MODIS DRE. The datasets from POLDER and OMI-MODIS effectively provide lower and upper bounds for the aerosol DRE over clouds over the south-east Atlantic, which can be used to challenge global circulation models (GCMs). Comparisons of model and satellite datasets should also account for sampling issues. The complementary DRE retrievals from OMI-MODIS and POLDER may benefit from upcoming satellite missions that combine spectrometer and polarimeter measurements. . © Author(s) 2020. |
关键词 | aerosolbiomass burningclimate modelingcloud radiative forcingcomparative studydata setMODISPOLDERradiation budgetsatellite dataSCIAMACHYAtlantic OceanAtlantic Ocean (Southeast) |
语种 | 英语 |
来源机构 | Atmospheric Chemistry and Physics |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/131984 |
推荐引用方式 GB/T 7714 | De Graaf M.,Schulte R.,Peers F.,et al. Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI-MODIS[J]. Atmospheric Chemistry and Physics,2020,20(11). |
APA | De Graaf M.,Schulte R.,Peers F.,Waquet F.,Gijsbert Tilstra L.,&Stammes P..(2020).Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI-MODIS.,20(11). |
MLA | De Graaf M.,et al."Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI-MODIS".20.11(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。