Climate Change Data Portal
DOI | 10.1016/j.advwatres.2020.103511 |
Drivers for mass and momentum exchange between the main channel and river bank lateral cavities | |
Ouro P.; Juez C.; Franca M. | |
发表日期 | 2020 |
ISSN | 0309-1708 |
卷号 | 137 |
英文摘要 | Large-Eddy Simulations (LES) are used to investigate the governing processes involved in mass and momentum transfer between the flow in the main channel and symmetrically-distributed lateral bank cavities. In-cavity free-surface velocities, based on laboratory measurements made in an open channel, are used to validate the numerical results. A main vortical structure dominates the in-cavity flow which, despite the shallow nature of the flow, features a remarked three dimensional dynamics. LES results outline the largest velocities through the mouth of the cavity are attained in two thin regions near the bottom-bed and free-surface. In the shear layers established between the main channel and cavities is where the main transfer of turbulent momentum is made between these two flow regions, and the numerical simulations capture well the instantaneous coherent flow structures, e.g. Kelvin-Helmholtz vortices. LES captures a low-frequency standing wave phenomenon even with a rigid-lid approximation adopted at the free-surface boundary. Momentum exchange between cavities and main channel is analysed using the Reynolds Averaged momentum equation in the transverse direction, revealing that the pressure gradient term is the unique contributor to flushing momentum out of the cavities whilst convection and Reynolds normal stress terms are responsible for its entraining into the cavity. Furthermore, sediment deposition areas documented in the laboratory experiments are linked with the simulated hydrodynamics, which correlate with regions of low turbulent kinetic energy and vertical velocities near the bottom of the channel. Overall, the results shed new light into the complex mechanisms involved in mass and momentum transfer; this will aid to design embayments more efficiently regarding sediment transport processes. © 2020 Elsevier Ltd |
关键词 | Banks (bodies of water)HydrodynamicsKinetic energyKineticsLarge eddy simulationMass transferMomentumMomentum transferSediment transportShear flowTurbulenceFree-surface boundariesKelvin-helmholtz vorticesLaboratory measurementsMass and momentum transfersRiver bankSediment transport processThree-dimensional dynamicsTurbulent kinetic energyOpen channel flowcavitationdepositionlarge eddy simulationmass transportmomentum transferopen channel flowriver bankturbulencevortex |
语种 | 英语 |
来源机构 | Advances in Water Resources |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/131850 |
推荐引用方式 GB/T 7714 | Ouro P.,Juez C.,Franca M.. Drivers for mass and momentum exchange between the main channel and river bank lateral cavities[J]. Advances in Water Resources,2020,137. |
APA | Ouro P.,Juez C.,&Franca M..(2020).Drivers for mass and momentum exchange between the main channel and river bank lateral cavities.,137. |
MLA | Ouro P.,et al."Drivers for mass and momentum exchange between the main channel and river bank lateral cavities".137(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ouro P.]的文章 |
[Juez C.]的文章 |
[Franca M.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ouro P.]的文章 |
[Juez C.]的文章 |
[Franca M.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ouro P.]的文章 |
[Juez C.]的文章 |
[Franca M.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。