CCPortal
DOI10.1016/j.advwatres.2020.103614
Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC
Reuschen S.; Xu T.; Nowak W.
发表日期2020
ISSN0309-1708
卷号141
英文摘要The feasibility of probabilistic Bayesian inversion strongly depends on the dimensionality and complexity of the statistical prior model. Most geostatistical inversion approaches assume multi-Gaussian fields, and some assume (non-Gaussian) categorical fields, e.g., via multiple-point geostatistics. We combine these two into one hierarchical joint problem, which accounts for two (and possibly more) categories as well as heterogeneities inside each category. Recent works developed the conditional probability field method based on the Ensemble Kalman filter (EnKf) for this scenario. However, EnKf-type approaches take implicit linearity and (trans-)Gaussian assumptions, which are not feasible in weak-information regimes. Therefore, we develop a tailored Gibbs sampler, a kind of Markov chain Monte Carlo (MCMC) method. It can do this inversion without assumptions. Our algorithm extends an existing Gibbs sampler with parallel tempering for categorical fields to account for multi-Gaussian internal heterogeneity. We show our key idea and derive our algorithm from the detailed balance, required for MCMC algorithms. We test our algorithm on a synthetic channelized flow scenario for different levels of data available: A highly informative setting (transient flow data) where the synthetic truth can be recovered and a weakly informative setting (steady-state data only) where the synthetic truth cannot be recovered. Instead, we obtain a multi-modal posterior. For the proper testing of convergence, we use the scale reduction factor by Gelman and Rubin. Overall, the test illustrates that our algorithm performs well in both settings. © 2020
关键词Markov chainsMonte Carlo methodsTemperingConditional probabilitiesEnsemble Kalman FilterGaussian assumptionGeostatistical inversionGeostatistical modelsMarkov chain Monte Carlo methodMultiple-point geostatisticsParallel temperingGaussian distributionBayesian analysisGaussian methodgeostatisticsKalman filterMarkov chainMonte Carlo analysissteady-state equilibrium
语种英语
来源机构Advances in Water Resources
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/131796
推荐引用方式
GB/T 7714
Reuschen S.,Xu T.,Nowak W.. Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC[J]. Advances in Water Resources,2020,141.
APA Reuschen S.,Xu T.,&Nowak W..(2020).Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC.,141.
MLA Reuschen S.,et al."Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC".141(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Reuschen S.]的文章
[Xu T.]的文章
[Nowak W.]的文章
百度学术
百度学术中相似的文章
[Reuschen S.]的文章
[Xu T.]的文章
[Nowak W.]的文章
必应学术
必应学术中相似的文章
[Reuschen S.]的文章
[Xu T.]的文章
[Nowak W.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。