CCPortal
DOI10.1029/2019GB006180
Global Fire Forecasts Using Both Large-Scale Climate Indices and Local Meteorological Parameters
Shen H.; Tao S.; Chen Y.; Odman M.T.; Zou Y.; Huang Y.; Chen H.; Zhong Q.; Zhang Y.; Chen Y.; Su S.; Lin N.; Zhuo S.; Li B.; Wang X.; Liu W.; Liu J.; Pavur G.K.; Russell A.G.
发表日期2019
ISSN0886-6236
EISSN1944-9224
起始页码1129
结束页码1145
卷号33期号:8
英文摘要Fire forecasts that predict dry-season fire activities several months in advance are beneficial for fire management. On a global scale, however, the predictability of fires is limited because fires depend on multiple factors and lack a single dominant predictor to describe diverse fire characteristics across regions. Here, based on 33 local meteorological parameters (MPs) and 37 large-scale climate indices (CIs), we establish four empirical model clusters to predict global interannual fire variability. We show that across various geographic locations, the models provide reliable fire forecasts at least three months prior to the peak fire months. Compared to MPs, CIs such as the Oceanic Niño Index are comparable or even superior predictors. Globally, as well as in most continents, the El Niño–Southern Oscillation is the major driving force, explaining 17% of interannual fire variability, with strong implications for fire carbon emissions and the global carbon cycle. Other important predictors include the Northern Atlantic sea surface temperature (9%), the Southern Atlantic sea surface temperature (5%), and the Pacific/North American Pattern (3%). The predictive models reveal a strong interaction between MPs and CIs, indicating potential climate-induced modification of fire responses to meteorological conditions. We show that the newly developed predictive models can benefit future fire management in response to climate change. © 2019. American Geophysical Union. All Rights Reserved.
英文关键词climate change; climate indices; global fire forecasts; meteorological conditions
语种英语
scopus关键词annual variation; carbon cycle; carbon emission; dry season; El Nino-Southern Oscillation; fire management; forest fire; prediction; sea surface temperature; Pacific Coast [North America]
来源期刊Global Biogeochemical Cycles
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/129714
作者单位Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratoire des Sciences du Climat et de l'Environnement/Institut Pierre Simon Laplace, Commissariat à l'Énergie Atomique et aux Énergies Alternatives–CNRS–Université de Versailles Saint-Quentin, Université Paris-Saclay, Gif-sur-Yvette, France; College of Environment, Zhejiang University of Technology, Hangzhou, China
推荐引用方式
GB/T 7714
Shen H.,Tao S.,Chen Y.,et al. Global Fire Forecasts Using Both Large-Scale Climate Indices and Local Meteorological Parameters[J],2019,33(8).
APA Shen H..,Tao S..,Chen Y..,Odman M.T..,Zou Y..,...&Russell A.G..(2019).Global Fire Forecasts Using Both Large-Scale Climate Indices and Local Meteorological Parameters.Global Biogeochemical Cycles,33(8).
MLA Shen H.,et al."Global Fire Forecasts Using Both Large-Scale Climate Indices and Local Meteorological Parameters".Global Biogeochemical Cycles 33.8(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shen H.]的文章
[Tao S.]的文章
[Chen Y.]的文章
百度学术
百度学术中相似的文章
[Shen H.]的文章
[Tao S.]的文章
[Chen Y.]的文章
必应学术
必应学术中相似的文章
[Shen H.]的文章
[Tao S.]的文章
[Chen Y.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。