Climate Change Data Portal
DOI | 10.1038/s41561-019-0489-1 |
Enhanced upward heat transport at deep submesoscale ocean fronts | |
Siegelman L.; Klein P.; Rivière P.; Thompson A.F.; Torres H.S.; Flexas M.; Menemenlis D. | |
发表日期 | 2020 |
ISSN | 17520894 |
卷号 | 13期号:1 |
英文摘要 | The ocean is the largest solar energy collector on Earth. The amount of heat it can store is modulated by its complex circulation, which spans a broad range of spatial scales, from metres to thousands of kilometres. In the classical paradigm, fine oceanic scales, less than 20 km in size, are thought to drive a significant downward heat transport from the surface to the ocean interior, which increases oceanic heat uptake. Here we use a combination of satellite and in situ observations in the Antarctic Circumpolar Current to diagnose oceanic vertical heat transport. The results explicitly demonstrate how deep-reaching submesoscale fronts, with a size smaller than 20 km, are generated by mesoscale eddies of size 50–300 km. In contrast to the classical paradigm, these submesoscale fronts are shown to drive an anomalous upward heat transport from the ocean interior back to the surface that is larger than other contributions to vertical heat transport and of comparable magnitude to air–sea fluxes. This effect can remarkably alter the oceanic heat uptake and will be strongest in eddy-rich regions, such as the Antarctic Circumpolar Current, the Kuroshio Extension and the Gulf Stream, all of which are key players in the climate system. © 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. |
语种 | 英语 |
scopus关键词 | Antarctic Circumpolar Wave; heat transfer; in situ measurement; mesoscale motion; oceanic circulation; oceanic front; satellite altimetry; Antarctic Circumpolar Current; Atlantic Ocean; Gulf Stream; Kuroshio Extension; Pacific Ocean; Southern Ocean |
来源期刊 | Nature Geoscience |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/124540 |
作者单位 | Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, United States; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States; Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France; Université de Brest, CNRS, IRD, Ifremer, LOPS, Plouzané, France |
推荐引用方式 GB/T 7714 | Siegelman L.,Klein P.,Rivière P.,et al. Enhanced upward heat transport at deep submesoscale ocean fronts[J],2020,13(1). |
APA | Siegelman L..,Klein P..,Rivière P..,Thompson A.F..,Torres H.S..,...&Menemenlis D..(2020).Enhanced upward heat transport at deep submesoscale ocean fronts.Nature Geoscience,13(1). |
MLA | Siegelman L.,et al."Enhanced upward heat transport at deep submesoscale ocean fronts".Nature Geoscience 13.1(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。