CCPortal
DOI10.1038/s41561-019-0489-1
Enhanced upward heat transport at deep submesoscale ocean fronts
Siegelman L.; Klein P.; Rivière P.; Thompson A.F.; Torres H.S.; Flexas M.; Menemenlis D.
发表日期2020
ISSN17520894
卷号13期号:1
英文摘要The ocean is the largest solar energy collector on Earth. The amount of heat it can store is modulated by its complex circulation, which spans a broad range of spatial scales, from metres to thousands of kilometres. In the classical paradigm, fine oceanic scales, less than 20 km in size, are thought to drive a significant downward heat transport from the surface to the ocean interior, which increases oceanic heat uptake. Here we use a combination of satellite and in situ observations in the Antarctic Circumpolar Current to diagnose oceanic vertical heat transport. The results explicitly demonstrate how deep-reaching submesoscale fronts, with a size smaller than 20 km, are generated by mesoscale eddies of size 50–300 km. In contrast to the classical paradigm, these submesoscale fronts are shown to drive an anomalous upward heat transport from the ocean interior back to the surface that is larger than other contributions to vertical heat transport and of comparable magnitude to air–sea fluxes. This effect can remarkably alter the oceanic heat uptake and will be strongest in eddy-rich regions, such as the Antarctic Circumpolar Current, the Kuroshio Extension and the Gulf Stream, all of which are key players in the climate system. © 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
语种英语
scopus关键词Antarctic Circumpolar Wave; heat transfer; in situ measurement; mesoscale motion; oceanic circulation; oceanic front; satellite altimetry; Antarctic Circumpolar Current; Atlantic Ocean; Gulf Stream; Kuroshio Extension; Pacific Ocean; Southern Ocean
来源期刊Nature Geoscience
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/124540
作者单位Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, United States; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States; Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France; Université de Brest, CNRS, IRD, Ifremer, LOPS, Plouzané, France
推荐引用方式
GB/T 7714
Siegelman L.,Klein P.,Rivière P.,et al. Enhanced upward heat transport at deep submesoscale ocean fronts[J],2020,13(1).
APA Siegelman L..,Klein P..,Rivière P..,Thompson A.F..,Torres H.S..,...&Menemenlis D..(2020).Enhanced upward heat transport at deep submesoscale ocean fronts.Nature Geoscience,13(1).
MLA Siegelman L.,et al."Enhanced upward heat transport at deep submesoscale ocean fronts".Nature Geoscience 13.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Siegelman L.]的文章
[Klein P.]的文章
[Rivière P.]的文章
百度学术
百度学术中相似的文章
[Siegelman L.]的文章
[Klein P.]的文章
[Rivière P.]的文章
必应学术
必应学术中相似的文章
[Siegelman L.]的文章
[Klein P.]的文章
[Rivière P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。