CCPortal
DOI10.1038/s41558-019-0545-2
Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass
Terrer C.; Jackson R.B.; Prentice I.C.; Keenan T.F.; Kaiser C.; Vicca S.; Fisher J.B.; Reich P.B.; Stocker B.D.; Hungate B.A.; Peñuelas J.; McCallum I.; Soudzilovskaia N.A.; Cernusak L.A.; Talhelm A.F.; Van Sundert K.; Piao S.; Newton P.C.D.; Hovenden M.J.; Blumenthal D.M.; Liu Y.Y.; Müller C.; Winter K.; Field C.B.; Viechtbauer W.; Van Lissa C.J.; Hoosbeek M.R.; Watanabe M.; Koike T.; Leshyk V.O.; Polley H.W.; Franklin O.
发表日期2019
ISSN1758678X
卷号9期号:9
英文摘要Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1–6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2 7,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness9 and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
语种英语
来源期刊Nature Climate Change
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/124364
作者单位Department of Earth System Science, Stanford University, Stanford, CA, United States; Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, Spain; Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, Austria; Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, CA, United States; AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom; Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia; Department of Earth System Science, Tsinghua University, Beijing, China; Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, United States; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Department of Microbiology and Ecosystem Science, Division of Terrestrial Ec...
推荐引用方式
GB/T 7714
Terrer C.,Jackson R.B.,Prentice I.C.,et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass[J],2019,9(9).
APA Terrer C..,Jackson R.B..,Prentice I.C..,Keenan T.F..,Kaiser C..,...&Franklin O..(2019).Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass.Nature Climate Change,9(9).
MLA Terrer C.,et al."Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass".Nature Climate Change 9.9(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Terrer C.]的文章
[Jackson R.B.]的文章
[Prentice I.C.]的文章
百度学术
百度学术中相似的文章
[Terrer C.]的文章
[Jackson R.B.]的文章
[Prentice I.C.]的文章
必应学术
必应学术中相似的文章
[Terrer C.]的文章
[Jackson R.B.]的文章
[Prentice I.C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。