CCPortal
DOI10.1016/j.atmosenv.2020.117287
Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolution in Southern California
Weissert L.; Alberti K.; Miles E.; Miskell G.; Feenstra B.; Henshaw G.S.; Papapostolou V.; Patel H.; Polidori A.; Salmond J.A.; Williams D.E.
发表日期2020
ISSN13522310
卷号223
英文摘要The development of low-cost sensors and novel calibration algorithms offer new opportunities to supplement existing regulatory networks to measure air pollutants at a high spatial resolution and at hourly and sub-hourly timescales. We use a random forest model on data from a network of low-cost sensors to describe the effect of land use features on local-scale air quality, extend this model to describe the hourly-scale variation of air quality at high spatial resolution, and show that deviations from the model can be used to identify particular conditions and locations where air quality differs from the expected land-use effect. The conditions and locations under which deviations were detected conform to expectations based on general experience. © 2020 Elsevier Ltd
英文关键词Air quality sensor network; Land-use regression; Nitrogen dioxide; Ozone
学科领域Air quality; Costs; Decision trees; Image resolution; Nitrogen oxides; Ozone; Sensor networks; Calibration algorithm; High spatial resolution; Land use regression; Nitrogen dioxides; Particular condition; Random forest modeling; Southern California; Temporal and spatial; Land use; nitrogen dioxide; ozone; air quality; atmospheric pollution; calibration; concentration (composition); interpolation; land use; land use change; network analysis; nitric oxide; ozone; regression analysis; sensor; spatial resolution; air monitoring; air pollutant; air pollution; air quality; Article; California; circadian rhythm; environment; instrument validation; land use; meteorology; prediction; priority journal; random forest; spatiotemporal analysis; toxic concentration; wind; California; United States
语种英语
scopus关键词Air quality; Costs; Decision trees; Image resolution; Nitrogen oxides; Ozone; Sensor networks; Calibration algorithm; High spatial resolution; Land use regression; Nitrogen dioxides; Particular condition; Random forest modeling; Southern California; Temporal and spatial; Land use; nitrogen dioxide; ozone; air quality; atmospheric pollution; calibration; concentration (composition); interpolation; land use; land use change; network analysis; nitric oxide; ozone; regression analysis; sensor; spatial resolution; air monitoring; air pollutant; air pollution; air quality; Article; California; circadian rhythm; environment; instrument validation; land use; meteorology; prediction; priority journal; random forest; spatiotemporal analysis; toxic concentration; wind; California; United States
来源期刊Atmospheric Environment
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/120766
作者单位School of Chemical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; Aeroqual Ltd, 460 Rosebank Road, Avondale, Auckland, 1026, New Zealand; School of Environment, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; South Coast Air Quality Management District, 21865 Copley Drive, Diamond Bar, CA 91765, United States
推荐引用方式
GB/T 7714
Weissert L.,Alberti K.,Miles E.,et al. Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolution in Southern California[J],2020,223.
APA Weissert L..,Alberti K..,Miles E..,Miskell G..,Feenstra B..,...&Williams D.E..(2020).Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolution in Southern California.Atmospheric Environment,223.
MLA Weissert L.,et al."Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolution in Southern California".Atmospheric Environment 223(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Weissert L.]的文章
[Alberti K.]的文章
[Miles E.]的文章
百度学术
百度学术中相似的文章
[Weissert L.]的文章
[Alberti K.]的文章
[Miles E.]的文章
必应学术
必应学术中相似的文章
[Weissert L.]的文章
[Alberti K.]的文章
[Miles E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。