Climate Change Data Portal
DOI | 10.1016/j.atmosenv.2020.117292 |
Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation | |
Stampfer O.; Austin E.; Ganuelas T.; Fiander T.; Seto E.; Karr C.J. | |
发表日期 | 2020 |
ISSN | 13522310 |
卷号 | 224 |
英文摘要 | Rural lower Yakima Valley, Washington is home to the reservation of the Confederated Tribes and Bands of the Yakama Nation, and is a major agricultural region. Episodic poor air quality impacts this area, reflecting sources of particulate matter with a diameter of less than 2.5 μm (PM2.5) that include residential wood smoke, agricultural biomass burning and other emissions, truck traffic, backyard burning, and wildfire smoke. University of Washington partnered with the Yakama Nation Environmental Management Program to investigate characteristics of PM2.5 using 9 months of data from a combination of low-cost optical particle counters and a 5-wavelength aethalometer (MA200 Aethlabs) over 4 seasons and an episode of summer wildfire smoke. The greatest percentage of hours sampled with PM2.5 >12 μg/m3 occurred during the wildfire smoke episode (59%), followed by fall (23%) and then winter (21%). Mean (SD) values of Delta-C (μg/m3), which has been posited as an indicator of wood smoke, and determined as the mass absorbance difference at 375–880 nm, were: summer – wildfire smoke 0.34 (0.52), winter 0.27 (0.32), fall 0.10 (0.22), spring 0.05 (0.11), and summer – no wildfire smoke 0.04 (0.14). Mean (95% confidence interval) values of the absorption Ångström exponent, an indicator of the wavelength dependence of the aerosol, were: winter 1.5 (1.2–1.8), summer – wildfire smoke 1.4 (1.0–1.8), fall 1.3 (1.1–1.4), spring 1.2 (1.1–1.4), and summer – no wildfire smoke 1.2 (1.0–1.3). The trends in Delta-C and absorption Ångström exponents are consistent with expectations that a higher value reflects more biomass burning. These results suggest that biomass burning is an important contributor to PM2.5 in the wintertime, and emissions associated with diesel and soot are important contributors in the fall; however, the variety of emissions sources and combustion conditions present in this region may limit the utility of traditional interpretations of aethalometer data. Further research on the interpretation of aethalometer data in regions with complex emissions would contribute to much-needed understanding in communities impacted by air pollution from agricultural as well as residential sources of combustion. © 2020 Elsevier Ltd |
英文关键词 | Aethalometer; Agricultural; Biomass burning; Low-cost sensor; PM2.5; Rural |
学科领域 | Agriculture; Air quality; Biomass; Combustion; Costs; Environmental management; Fires; Housing; Rural areas; Aethalometer; Agricultural; Biomass-burning; Low-cost sensors; PM2.5; Smoke; air quality; atmospheric pollution; biomass burning; combustion; particulate matter; rural area; sensor; smoke; soot; wavelength; wildfire; absorption; aerosol; air monitoring; air quality; Article; autumn; biomass; combustion; cost benefit analysis; environmental management; exhaust gas; particle size; particulate matter; priority journal; soot; spring; summer; Washington; wildfire; winter; wood; Washington |
语种 | 英语 |
scopus关键词 | Agriculture; Air quality; Biomass; Combustion; Costs; Environmental management; Fires; Housing; Rural areas; Aethalometer; Agricultural; Biomass-burning; Low-cost sensors; PM2.5; Smoke; air quality; atmospheric pollution; biomass burning; combustion; particulate matter; rural area; sensor; smoke; soot; wavelength; wildfire; absorption; aerosol; air monitoring; air quality; Article; autumn; biomass; combustion; cost benefit analysis; environmental management; exhaust gas; particle size; particulate matter; priority journal; soot; spring; summer; Washington; wildfire; winter; wood; Washington |
来源期刊 | Atmospheric Environment |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/120747 |
作者单位 | University of Washington Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE, STE 301, Seattle, WA 98105, United States; Yakama Nation Environmental Management Program, P.O. Box 151, Toppenish, WA 98948, United States; University of Washington, Department of Pediatrics, 4250 Roosevelt Way NE, Seattle, WA 98105, United States |
推荐引用方式 GB/T 7714 | Stampfer O.,Austin E.,Ganuelas T.,et al. Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation[J],2020,224. |
APA | Stampfer O.,Austin E.,Ganuelas T.,Fiander T.,Seto E.,&Karr C.J..(2020).Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation.Atmospheric Environment,224. |
MLA | Stampfer O.,et al."Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation".Atmospheric Environment 224(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。