CCPortal
DOI10.1016/j.atmosres.2019.104771
Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008)
Shen F.; Xu D.; Min J.; Chu Z.; Li X.
发表日期2020
ISSN0169-8095
卷号234
英文摘要Four dimensional ensemble-variation data assimilation (4DEnVar) is the method that considers the flow dependent background error covariance (BEC) and asynchronous observations throughout the assimilation window, which avoids the maintenance of the adjoint model. The impacts of assimilation of radial velocity (Vr) data using hybrid-4DEnVar for the analyses and forecasts of hurricane Ike are investigated using Weather Research and Forecasting and Data Assimilation model (WRFDA). 4DEnVar is coupled with Ensemble Transform Kalman Filter (ETKF) by updating the ensemble mean by the hybrid scheme and the ensemble perturbations are updated by the ETKF. Single observation tests for typical Jet cast and tropical cyclone (TC) case are conducted before the real hurricane Ike (2008) case. It is found that the analysis increment moves downstream by the end of the assimilation window. The linear propagation represented by the 4DEnVar method is close to the full nonlinear model integration. For the real IKE case, it is found that positive and spiral temperature increments, best track and intensity forecast are found in 4DEnVar experiment, indicating a more realistic thermal structure of hurricane Ike. 3DEnVar and 3DVar-FGAT are limited due to the lack of the BEC description spatially and temporally. 3DVar experiment produces much smoother and weaker increments with cold temperature increments at the hurricane vortex center at lower levels. © 2019
英文关键词4DEnVar; Numerical simulation; Radial velocity data; WRF data assimilation
学科领域Computer simulation; Thermal conductivity; Weather forecasting; 4DEnVar; Background-error covariances; Data assimilation; Data assimilation model; Ensemble perturbation; Radial velocity datum; Temperature increment; Weather research and forecasting; Hurricanes; climate prediction; data assimilation; ensemble forecasting; Hurricane Ike 2008; Kalman filter; numerical method; radar; weather forecasting
语种英语
scopus关键词Computer simulation; Thermal conductivity; Weather forecasting; 4DEnVar; Background-error covariances; Data assimilation; Data assimilation model; Ensemble perturbation; Radial velocity datum; Temperature increment; Weather research and forecasting; Hurricanes; climate prediction; data assimilation; ensemble forecasting; Hurricane Ike 2008; Kalman filter; numerical method; radar; weather forecasting
来源期刊Atmospheric Research
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/120516
作者单位Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, China; Key Laboratory of Transportation Meteorology, CMA, and Jiangsu Research Institute of Meteorological Sciences, and Nanjing Joint Center of Atmospheric Research, Nanjing, China; Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu, China
推荐引用方式
GB/T 7714
Shen F.,Xu D.,Min J.,et al. Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008)[J],2020,234.
APA Shen F.,Xu D.,Min J.,Chu Z.,&Li X..(2020).Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008).Atmospheric Research,234.
MLA Shen F.,et al."Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008)".Atmospheric Research 234(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shen F.]的文章
[Xu D.]的文章
[Min J.]的文章
百度学术
百度学术中相似的文章
[Shen F.]的文章
[Xu D.]的文章
[Min J.]的文章
必应学术
必应学术中相似的文章
[Shen F.]的文章
[Xu D.]的文章
[Min J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。