CCPortal
DOI10.5194/tc-10-159-2016
Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland
Magnússon E.; Belart J.M.-C.; Pálsson F.; Ágústsson H.; Crochet P.
发表日期2016
ISSN19940416
卷号10期号:1
英文摘要In this paper we describe how recent high-resolution digital elevation models (DEMs) can be used to extract glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne lidar in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high-resolution lidar DEM. The lidar DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice- and snow-free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical semivariogram model, which along with the derived errors in ice- and snow-free areas were used as inputs into 1000 sequential Gaussian simulations (SGSims). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM and the 95 % confidence level of this bias. This results in bias correction varying in magnitude between 0.03 m (in 1975) and 1.66 m (in 1946) and uncertainty values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2–4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional seasonal bias correction was therefore estimated using a degree-day model to obtain the volume change between the start of 2 glaciological years (1 October). This correction was largest for the 1960 DEM, corresponding to an average elevation change of −3.5 m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume changes caused by uncertainties of the SGSim bias correction, the seasonal bias correction and the interpolation of glacier surface where data are lacking. The record shows a glacier-wide mass balance rate of B = −0.26 ± 0.04 m w.e. a−1 for the entire study period (1946–2011). We observe significant decadal variability including periods of mass gain, peaking in 1985–1994 with B = 0.27 ± 0.11 m w.e. a−1. There is a striking difference when B is calculated separately for the western and eastern halves of Drangajökull, with a reduction of eastern part on average ∼ 3 times faster than the western part. Our study emphasizes the need for applying rigorous geostatistical methods for obtaining uncertainty estimates of geodetic mass balance, the importance of seasonal corrections of DEMs from glaciers with high mass turnover and the risk of extrapolating mass balance record from one glacier to another even over short distances. © Author(s) 2016.
学科领域aerial photograph; confidence interval; decadal variation; digital elevation model; geodetic datum; geostatistics; glacier mass balance; historical record; ice cap; interpolation; numerical model; photogrammetry; spatial resolution; uncertainty analysis; Drangajokull; Iceland
语种英语
scopus关键词aerial photograph; confidence interval; decadal variation; digital elevation model; geodetic datum; geostatistics; glacier mass balance; historical record; ice cap; interpolation; numerical model; photogrammetry; spatial resolution; uncertainty analysis; Drangajokull; Iceland
来源期刊Cryosphere
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/119726
作者单位Institute of Earth Sciences, University of Iceland, Sturlugata 7, Reykjavík, 101, Iceland; Icelandic Meteorological Office, Bústaðavegi 7–9, Reykjavík, 108, Iceland
推荐引用方式
GB/T 7714
Magnússon E.,Belart J.M.-C.,Pálsson F.,等. Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland[J],2016,10(1).
APA Magnússon E.,Belart J.M.-C.,Pálsson F.,Ágústsson H.,&Crochet P..(2016).Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland.Cryosphere,10(1).
MLA Magnússon E.,et al."Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland".Cryosphere 10.1(2016).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Magnússon E.]的文章
[Belart J.M.-C.]的文章
[Pálsson F.]的文章
百度学术
百度学术中相似的文章
[Magnússon E.]的文章
[Belart J.M.-C.]的文章
[Pálsson F.]的文章
必应学术
必应学术中相似的文章
[Magnússon E.]的文章
[Belart J.M.-C.]的文章
[Pálsson F.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。