CCPortal
DOI10.5194/tc-10-179-2016
Simulated high-latitude soil thermal dynamics during the past 4 decades
Peng S.; Ciais P.; Krinner G.; Wang T.; Gouttevin I.; McGuire A.D.; Lawrence D.; Burke E.; Chen X.; Decharme B.; Koven C.; MacDougall A.; Rinke A.; Saito K.; Zhang W.; Alkama R.; Bohn T.J.; Delire C.; Hajima T.; Ji D.; Lettenmaier D.P.; Miller P.A.; Moore J.C.; Smith B.; Sueyoshi T.
发表日期2016
ISSN19940416
卷号10期号:1
英文摘要Soil temperature (Ts/change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the activelayer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960-2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Ta/and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr-1/, diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R D-0:85, P = 0:003), but not with the initial total nearsurface permafrost area (R =-0:30, P = 0:438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of-2.80 ± 0.67 million km2 °C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr-1 from 1960 to 2000. This corresponds to 9-18 % degradation of the current permafrost area. © 2016 Author(s).
学科领域active layer; air temperature; climate forcing; ecosystem modeling; latitude; longwave radiation; permafrost; soil carbon; soil temperature; spatiotemporal analysis; thermal regime; uncertainty analysis; warming
语种英语
scopus关键词active layer; air temperature; climate forcing; ecosystem modeling; latitude; longwave radiation; permafrost; soil carbon; soil temperature; spatiotemporal analysis; thermal regime; uncertainty analysis; warming
来源期刊Cryosphere
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/119720
作者单位UJF-Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble, 38041, France; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, Gif-sur-Yvette, 91191, France; Irstea, UR HHLY, 5 rue de la Doua, CS 70077, Villeurbanne Cedex, 69626, France; US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK, United States; National Center for Atmospheric Research, Boulder, CO, United States; Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, United Kingdom; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States; CNRM-GAME, Unitémixte de Recherche CNRS, Meteo-France (UMR 3589), 42 avCoriolis, Toulouse Cedex, 31057, France; Lawrence Berkeley National Laboratory, Berkeley, CA, United States; School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada; College of Global Change and Earth System Science, Beijing Normal Un...
推荐引用方式
GB/T 7714
Peng S.,Ciais P.,Krinner G.,et al. Simulated high-latitude soil thermal dynamics during the past 4 decades[J],2016,10(1).
APA Peng S..,Ciais P..,Krinner G..,Wang T..,Gouttevin I..,...&Sueyoshi T..(2016).Simulated high-latitude soil thermal dynamics during the past 4 decades.Cryosphere,10(1).
MLA Peng S.,et al."Simulated high-latitude soil thermal dynamics during the past 4 decades".Cryosphere 10.1(2016).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peng S.]的文章
[Ciais P.]的文章
[Krinner G.]的文章
百度学术
百度学术中相似的文章
[Peng S.]的文章
[Ciais P.]的文章
[Krinner G.]的文章
必应学术
必应学术中相似的文章
[Peng S.]的文章
[Ciais P.]的文章
[Krinner G.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。