CCPortal
DOI10.5194/tc-10-913-2016
Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery
Muckenhuber S.; Korosov A.A.; Sandven S.
发表日期2016
ISSN19940416
卷号10期号:2
英文摘要A computationally efficient, open-source feature-tracking algorithm, called ORB, is adopted and tuned for sea ice drift retrieval from Sentinel-1 SAR (Synthetic Aperture Radar) images. The most suitable setting and parameter values have been found using four Sentinel-1 image pairs representative of sea ice conditions between Greenland and Severnaya Zemlya during winter and spring. The performance of the algorithm is compared to two other feature-tracking algorithms, namely SIFT (Scale-Invariant Feature Transform) and SURF (Speeded-Up Robust Features). Having been applied to 43 test image pairs acquired over Fram Strait and the north-east of Greenland, the tuned ORB (Oriented FAST and Rotated BRIEF) algorithm produces the highest number of vectors (177 513, SIFT: 43 260 and SURF: 25 113), while being computationally most efficient (66 s, SIFT: 182 s and SURF: 99 s per image pair using a 2.7 GHz processor with 8 GB memory). For validation purposes, 314 manually drawn vectors have been compared with the closest calculated vectors, and the resulting root mean square error of ice drift is 563 m. All test image pairs show a significantly better performance of the HV (horizontal transmit, vertical receive) channel due to higher informativeness. On average, around four times as many vectors have been found using HV polarization. All software requirements necessary for applying the presented feature-tracking algorithm are open source to ensure a free and easy implementation. © Author(s) 2016.
学科领域algorithm; ice drift; image analysis; sea ice; Sentinel; software; synthetic aperture radar; Arctic; Fram Strait; Greenland; Krasnoyarsk [Russian Federation]; Russian Federation; Severnaya Zemlya
语种英语
scopus关键词algorithm; ice drift; image analysis; sea ice; Sentinel; software; synthetic aperture radar; Arctic; Fram Strait; Greenland; Krasnoyarsk [Russian Federation]; Russian Federation; Severnaya Zemlya
来源期刊Cryosphere
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/119655
作者单位Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47, Bergen, 5006, Norway
推荐引用方式
GB/T 7714
Muckenhuber S.,Korosov A.A.,Sandven S.. Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery[J],2016,10(2).
APA Muckenhuber S.,Korosov A.A.,&Sandven S..(2016).Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery.Cryosphere,10(2).
MLA Muckenhuber S.,et al."Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery".Cryosphere 10.2(2016).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Muckenhuber S.]的文章
[Korosov A.A.]的文章
[Sandven S.]的文章
百度学术
百度学术中相似的文章
[Muckenhuber S.]的文章
[Korosov A.A.]的文章
[Sandven S.]的文章
必应学术
必应学术中相似的文章
[Muckenhuber S.]的文章
[Korosov A.A.]的文章
[Sandven S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。