Climate Change Data Portal
DOI | 10.5194/tc-10-2057-2016 |
Direct visualization of solute locations in laboratory ice samples | |
Hullar T.; Anastasio C. | |
发表日期 | 2016 |
ISSN | 19940416 |
卷号 | 10期号:5 |
英文摘要 | Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, few studies have examined either solute locations in laboratory samples or the possible factors controlling solute segregation. To address this, we used micro-computed tomography (microCT) to examine solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or rose bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (∼ 2 μm). Freezing solutions in plastic vs. glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with rose bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in mobile liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to the freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results. © Author(s) 2016. |
学科领域 | air bubble; air-ice interaction; chemical reaction; experimental design; ice; laboratory method; solute; temperature effect; visualization |
语种 | 英语 |
scopus关键词 | air bubble; air-ice interaction; chemical reaction; experimental design; ice; laboratory method; solute; temperature effect; visualization |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/119586 |
作者单位 | Department of Land, Air, and Water Resources, University of California, Davis, United States |
推荐引用方式 GB/T 7714 | Hullar T.,Anastasio C.. Direct visualization of solute locations in laboratory ice samples[J],2016,10(5). |
APA | Hullar T.,&Anastasio C..(2016).Direct visualization of solute locations in laboratory ice samples.Cryosphere,10(5). |
MLA | Hullar T.,et al."Direct visualization of solute locations in laboratory ice samples".Cryosphere 10.5(2016). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hullar T.]的文章 |
[Anastasio C.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hullar T.]的文章 |
[Anastasio C.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hullar T.]的文章 |
[Anastasio C.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。