Climate Change Data Portal
DOI | 10.5194/tc-11-319-2017 |
Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting | |
Michael Gladstone R.; Charles Warner R.; Keith Galton-Fenzi B.; Gagliardini O.; Zwinger T.; Greve R. | |
发表日期 | 2017 |
ISSN | 19940416 |
卷号 | 11期号:1 |
英文摘要 | Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting. Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence. A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line. Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary. © Author(s) 2017. |
学科领域 | basal ice; basal melting; computer simulation; floating ice; glaciology; grounding line; ice sheet; ice shelf; outflow; power law; sea ice; sliding; spatial distribution |
语种 | 英语 |
scopus关键词 | basal ice; basal melting; computer simulation; floating ice; glaciology; grounding line; ice sheet; ice shelf; outflow; power law; sea ice; sliding; spatial distribution |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/119450 |
作者单位 | VAW, Eidgenössische Technische Hochschule Zürich, ETHZ, Zürich, Switzerland; Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Australia; Arctic Centre, University of Lapland, Rovaniemi, Finland; Australian Antarctic Division, Kingston, TAS, Australia; Univ. Grenoble Alpes, CNRS, IRD, IGE, Grenoble, 38000, France; CSC-IT Center for Science Ltd., Espoo, Finland; Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan |
推荐引用方式 GB/T 7714 | Michael Gladstone R.,Charles Warner R.,Keith Galton-Fenzi B.,et al. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting[J],2017,11(1). |
APA | Michael Gladstone R.,Charles Warner R.,Keith Galton-Fenzi B.,Gagliardini O.,Zwinger T.,&Greve R..(2017).Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting.Cryosphere,11(1). |
MLA | Michael Gladstone R.,et al."Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting".Cryosphere 11.1(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。