Climate Change Data Portal
DOI | 10.5194/tc-11-553-2017 |
Frontal destabilization of Stonebreen, Edgeøya, Svalbard | |
Strozzi T.; Kääb A.; Schellenberger T. | |
发表日期 | 2017 |
ISSN | 19940416 |
卷号 | 11期号:1 |
英文摘要 | In consideration of the strong atmospheric warming that has been observed since the 1990s in polar regions there is a need to quantify mass loss of Arctic ice caps and glaciers and their contribution to sea level rise. In polar regions a large part of glacier ablation is through calving of tidewater glaciers driven by ice velocities and their variations. The Svalbard region is characterized by glaciers with rapid dynamic fluctuations of different types, including irreversible adjustments of calving fronts to a changing mass balance and reversible, surge-type activities. For large areas, however, we do not have much past and current information on glacier dynamic fluctuations. Recently, through frequent monitoring based on repeat optical and synthetic aperture radar (SAR) satellite data, a number of zones of velocity increases have been observed at formerly slow-flowing calving fronts on Svalbard. Here we present the dynamic evolution of the southern lobe of Stonebreen on Edgeøya. We observe a slowly steady retreat of the glacier front from 1971 until 2011, followed by a strong increase in ice surface velocity along with a decrease of volume and frontal extension since 2012. The considerable losses in ice thickness could have made the tide-water calving glacier, which is grounded below sea level some 6 km inland from the 2014 front, more sensitive to surface meltwater reaching its bed and/or warm ocean water increasing frontal ablation with subsequent strong multi-annual ice-flow acceleration. © 2017 Author(s). |
学科领域 | ablation; glacier mass balance; glacier retreat; global warming; ice cap; ice flow; ice thickness; iceberg calving; meltwater; sea level change; synthetic aperture radar; tidewater glacier; Arctic; Arctic; Edgeoya; Spitsbergen; Svalbard; Svalbard and Jan Mayen |
语种 | 英语 |
scopus关键词 | ablation; glacier mass balance; glacier retreat; global warming; ice cap; ice flow; ice thickness; iceberg calving; meltwater; sea level change; synthetic aperture radar; tidewater glacier; Arctic; Arctic; Edgeoya; Spitsbergen; Svalbard; Svalbard and Jan Mayen |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/119435 |
作者单位 | Gamma Remote Sensing, Worbstrasse 225, Gümligen, 3073, Switzerland; Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern Oslo, 0316, Norway |
推荐引用方式 GB/T 7714 | Strozzi T.,Kääb A.,Schellenberger T.. Frontal destabilization of Stonebreen, Edgeøya, Svalbard[J],2017,11(1). |
APA | Strozzi T.,Kääb A.,&Schellenberger T..(2017).Frontal destabilization of Stonebreen, Edgeøya, Svalbard.Cryosphere,11(1). |
MLA | Strozzi T.,et al."Frontal destabilization of Stonebreen, Edgeøya, Svalbard".Cryosphere 11.1(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。