Climate Change Data Portal
DOI | 10.5194/tc-11-1059-2017 |
Response of seasonal soil freeze depth to climate change across China | |
Peng X.; Zhang T.; Frauenfeld O.W.; Wang K.; Cao B.; Zhong X.; Su H.; Mu C. | |
发表日期 | 2017 |
ISSN | 19940416 |
卷号 | 11期号:3 |
英文摘要 | The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18±0.03 cm yr-1, resulting in a net decrease of 8.05±1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process. © Author(s) 2017. |
学科领域 | air temperature; climate change; climate effect; environmental factor; freeze-thaw cycle; freezing; index method; NDVI; seasonality; soil depth; surface temperature; thawing; China |
语种 | 英语 |
scopus关键词 | air temperature; climate change; climate effect; environmental factor; freeze-thaw cycle; freezing; index method; NDVI; seasonality; soil depth; surface temperature; thawing; China |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/119404 |
作者单位 | Key Laboratory of Western China's Environmental Systems, Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Geography, Texas AandM University, College StationTX 77843-3147, United States; Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, CO 80309, United States; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China |
推荐引用方式 GB/T 7714 | Peng X.,Zhang T.,Frauenfeld O.W.,et al. Response of seasonal soil freeze depth to climate change across China[J],2017,11(3). |
APA | Peng X..,Zhang T..,Frauenfeld O.W..,Wang K..,Cao B..,...&Mu C..(2017).Response of seasonal soil freeze depth to climate change across China.Cryosphere,11(3). |
MLA | Peng X.,et al."Response of seasonal soil freeze depth to climate change across China".Cryosphere 11.3(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。