Climate Change Data Portal
DOI | 10.5194/tc-11-1333-2017 |
Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea | |
Leifer I.; Chernykh D.; Shakhova N.; Semiletov I. | |
发表日期 | 2017 |
ISSN | 19940416 |
卷号 | 11期号:3 |
英文摘要 | Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (ψ(σ)) with respect to Q found ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (ψ(Q)) was bimodal, with weak ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost. © Author(s) 2017. |
学科领域 | bubble; echo sounder; estimation method; flux measurement; gas seepage; hydrocarbon seep; methane; permafrost; seafloor; theoretical study; Arctic Ocean; Laptev Sea |
语种 | 英语 |
scopus关键词 | bubble; echo sounder; estimation method; flux measurement; gas seepage; hydrocarbon seep; methane; permafrost; seafloor; theoretical study; Arctic Ocean; Laptev Sea |
来源期刊 | Cryosphere |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/119386 |
作者单位 | Bubbleology Research International, Solvang, CA 93463, United States; Russian Academy of Science, Pacific Oceanological Institute, Vladivostok, Russian Federation; Tomsk Polytechnic University, Tomsk, Russian Federation; University Alaska Fairbanks, International Arctic Research Center, Fairbanks, AK 99775, United States |
推荐引用方式 GB/T 7714 | Leifer I.,Chernykh D.,Shakhova N.,et al. Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea[J],2017,11(3). |
APA | Leifer I.,Chernykh D.,Shakhova N.,&Semiletov I..(2017).Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea.Cryosphere,11(3). |
MLA | Leifer I.,et al."Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea".Cryosphere 11.3(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。