CCPortal
DOI10.3390/rs11040457
Retrieving the Lake Trophic Level Index with Landsat-8 Image by Atmospheric Parameter and RBF: A Case Study of Lakes in Wuhan, China
Zhou, Yadong; He, Baoyin; Xiao, Fei; Feng, Qi; Kou, Jiefeng; Liu, Hui
发表日期2019
ISSN2072-4292
卷号11期号:4
英文摘要The importance of atmospheric correction is pronounced for retrieving physical parameters in aquatic systems. To improve the retrieval accuracy of trophic level index (TLI), we built eight models with 43 samples in Wuhan and proposed an improved method by taking atmospheric water vapor (AWV) information and Landsat-8 (L8) remote sensing image into the input layer of radical basis function (RBF) neural network. All image information taken in RBF have been radiometrically calibrated. Except model(a), image data used in the other seven models were not atmospherically corrected. The eight models have different inputs and the same output (TLI). The models are as follows: (1) model(a), the inputs are seven single bands; (2) model(c), besides seven single bands (b1, b2, b3, b4, b5, b6, b7), we added the AWV parameter k1 to the inputs; (3) model(c1), the inputs are AWV difference coefficient k2 and the seven bands; (4) model(c2), the input layers include seven single bands, k1 and k2; (5) model(b), seven band ratios (b3/b5, b1/b2, b3/b7, b2/b5, b2/b7, b3/b6, and b3/b4) were used as input parameters; (6) model(b1), the inputs are k1 and seven band ratios; (7) model(b2), the inputs are k2 and seven band ratios; (8) model(b3), the inputs are k1, k2, and seven band ratios. We estimated models with root mean squared error (RMSE), model(a) > model(b3) > model(b1) > model(c2) > model(c) > model(b) > model(c1) > model(b2). RMSE of the eight models are 12.762, 11.274, 10.577, 8.904, 8.361, 6.396, 5.389, and 5.104, respectively. Model b2 and c1 are two best models in these experiments, which confirms both the seven single bands and band ratios with k2 are superior to other models. Results also corroborate that most lakes in Wuhan urban area are in mesotrophic and light eutrophic states.
关键词RBF neural networkatmospheric water vaporLandsat-8TLIlakes in Wuhan
学科领域Remote Sensing
语种英语
WOS研究方向Remote Sensing
来源期刊REMOTE SENSING
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/112092
作者单位Chinese Acad Sci, Inst Geodesy & Geophys, Wuhan 430077, Hubei, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Yadong,He, Baoyin,Xiao, Fei,et al. Retrieving the Lake Trophic Level Index with Landsat-8 Image by Atmospheric Parameter and RBF: A Case Study of Lakes in Wuhan, China[J]. 中国科学院西北生态环境资源研究院,2019,11(4).
APA Zhou, Yadong,He, Baoyin,Xiao, Fei,Feng, Qi,Kou, Jiefeng,&Liu, Hui.(2019).Retrieving the Lake Trophic Level Index with Landsat-8 Image by Atmospheric Parameter and RBF: A Case Study of Lakes in Wuhan, China.REMOTE SENSING,11(4).
MLA Zhou, Yadong,et al."Retrieving the Lake Trophic Level Index with Landsat-8 Image by Atmospheric Parameter and RBF: A Case Study of Lakes in Wuhan, China".REMOTE SENSING 11.4(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Yadong]的文章
[He, Baoyin]的文章
[Xiao, Fei]的文章
百度学术
百度学术中相似的文章
[Zhou, Yadong]的文章
[He, Baoyin]的文章
[Xiao, Fei]的文章
必应学术
必应学术中相似的文章
[Zhou, Yadong]的文章
[He, Baoyin]的文章
[Xiao, Fei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。