Climate Change Data Portal
DOI | 10.1016/j.scitotenv.2019.05.352 |
Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster | |
Qin, Hetian1,2; Huang, Qiuhao1,2,3; Zhang, Ziwei1,2; Lu, Yu1,2; Li, Manchun1,2,3; Xu, Lang1,2; Chen, Zhenjie1,2,3 | |
发表日期 | 2019 |
ISSN | 0048-9697 |
EISSN | 1879-1026 |
卷号 | 684页码:413-424 |
英文摘要 | Global warming and climate change have become a serious environmental problem and China's carbon emissions are currently the highest in the world. Cities are the main sources of carbon emissions and the key to solving these problems. Therefore, research on reducing carbon dioxide emissions is a matter of concern. In this study, a spatial autocorrelation analysis was performed to understand the spatial characteristics of carbon dioxide emissions in 171 Chinese cities. Then, stepwise and geographically weighted regressions were used to explore the processes that drive carbon dioxide emissions in Chinese cities. A two-step cluster was used to classify Chinese cities into different categories based on the degree of impact of each driver. The results showed that there is a spatial aggregation relationship between urban carbon dioxide emissions. High-high clusters mainly occur in the Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations, while low-low clusters occur in the central, western, and southwestern cities. Among all variables, freight volume, per capita gross domestic product, population density, and the proportion of secondary industries correlate positively with carbon dioxide emissions, whereas the number of buses per 10,000 people correlates negatively with carbon dioxide emissions. The geographically weighted regression model provided more detailed results and revealed the spatial heterogeneity of the effects of the different drivers. The impact of population, economic factors, and industrial factors in the eastern region is significantly greater than that in the central and western regions. Freight volume and public transport have the most significant impact in the northeast region. The clustering results showed that cities can be divided into four types. These findings provide a reference and policy suggestions for how cities in different regions should reduce carbon dioxide emissions. (C) 2019 Elsevier B.V. All rights reserved. |
WOS研究方向 | Environmental Sciences & Ecology |
来源期刊 | SCIENCE OF THE TOTAL ENVIRONMENT |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/102965 |
作者单位 | 1.Nanjing Univ, Sch Geog & Oceanog Sci, Nanjing 210023, Jiangsu, Peoples R China; 2.Minist Land & Resource, Key Lab Coastal Zone Exploitat & Protect, Nanjing 210024, Jiangsu, Peoples R China; 3.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Qin, Hetian,Huang, Qiuhao,Zhang, Ziwei,et al. Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster[J],2019,684:413-424. |
APA | Qin, Hetian.,Huang, Qiuhao.,Zhang, Ziwei.,Lu, Yu.,Li, Manchun.,...&Chen, Zhenjie.(2019).Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster.SCIENCE OF THE TOTAL ENVIRONMENT,684,413-424. |
MLA | Qin, Hetian,et al."Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster".SCIENCE OF THE TOTAL ENVIRONMENT 684(2019):413-424. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。