CCPortal
DOI10.5194/essd-11-1263-2019
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Peltola, Olli1; Vesala, Timo2,3; Gao, Yao1; Raty, Olle4; Alekseychik, Pavel5; Aurela, Mika1; Chojnicki, Bogdan6; Desai, Ankur R.7; Dolman, Albertus J.8; Euskirchen, Eugenie S.9; Friborg, Thomas10; Goeckede, Mathias11; Helbig, Manuel12,13; Humphreys, Elyn14; Jackson, Robert B.15,16; Jocher, Georg17,31; Joos, Fortunat18,19; Klatt, Janina20; Knox, Sara H.21; Kowalska, Natalia6,31; Kutzbach, Lars22; Lienert, Sebastian18,19; Lohila, Annalea1,2; Mammarella, Ivan2; Nadeau, Daniel F.23; Nilsson, Mats B.17; Oechel, Walter C.24,25; Peichl, Matthias17; Pypker, Thomas26; Quinton, William27; Rinne, Janne28; Sachs, Torsten29; Samson, Mateusz6; Schmid, Hans Peter20; Sonnentag, Oliver13; Wille, Christian29; Zona, Donatella24,30; Aalto, Tuula1
发表日期2019
ISSN1866-3508
EISSN1866-3516
卷号11期号:3页码:1263-1289
英文摘要

Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process ("bottom-up") or inversion ("top-down") models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45 degrees N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash-Sutcliffe model efficiency = 0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3-41.2, 95% confidence interval calculated from a RF model ensemble), 31 (21.4-39.9) or 38 (25.9-49.5) Tg(CH4) yr(-1). To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163.


WOS研究方向Geology ; Meteorology & Atmospheric Sciences
来源期刊EARTH SYSTEM SCIENCE DATA
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/102048
作者单位1.Finnish Meteorol Inst, Climate Res Programme, POB 503, FIN-00101 Helsinki, Finland;
2.Univ Helsinki, Fac Sci, Inst Atmosphere & Earth Syst Res Phys, POB 68, FIN-00014 Helsinki, Finland;
3.Univ Helsinki, Fac Agr & Forestry, Inst Atmospher & Earth Syst Res Forest Sci, POB 27, FIN-00014 Helsinki, Finland;
4.Finnish Meteorol Inst, Meteorol Res, POB 503, FIN-00101 Helsinki, Finland;
5.Nat Resources Inst Finland LUKE, Helsinki 00790, Finland;
6.Poznan Univ Life Sci, Fac Environm Engn & Spatial Management, Dept Meteorol, PL-60649 Poznan, Poland;
7.Univ Wisconsin, Dept Atmospher & Ocean Sci, 1225 W Dayton St, Madison, WI 53706 USA;
8.Vrije Univ Amsterdam, Fac Sci, Dept Earth Sci, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands;
9.Univ Alaska Fairbanks, Inst Arctic Biol, 2140 Koyukuk Dr, Fairbanks, AK 99775 USA;
10.Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark;
11.Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany;
12.McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada;
13.Univ Montreal, Dept Geog, Montreal, PQ H2V 3W8, Canada;
14.Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON K1S 5B6, Canada;
15.Stanford Univ, Woods Inst Environm, Dept Earth Syst Sci, Stanford, CA 94305 USA;
16.Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA;
17.Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden;
18.Univ Bern, Phys Inst, Climate & Environm Phys, Bern, Switzerland;
19.Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland;
20.Karlsruhe Inst Technol, Inst Meteorol & Climatol Atmospher Environm Res I, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany;
21.Univ British Columbia, Dept Geog, Vancouver, BC V6T 1Z2, Canada;
22.Univ Hamburg, Ctr Earth Syst Res & Sustainabil, Inst Soil Sci, Allende Pl 2, D-20146 Hamburg, Germany;
23.Univ Laval, Dept Civil & Water Engn, Quebec City, PQ G1V 0A6, Canada;
24.San Diego State Univ, Dept Biol, Global Change Res Grp, San Diego, CA 92182 USA;
25.Univ Exeter, Coll Life & Environm Sci, Dept Geog, Exeter EX4 4RJ, Devon, England;
26.Thompson Rivers Univ, Dept Nat Resource Sci, Kamloops, BC V2C 0C8, Canada;
27.Wilfrid Laurier Univ, Cold Reg Res Ctr, Waterloo, ON N2L 3C5, Canada;
28.Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden;
29.GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany;
30.Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England;
31.Czech Acad Sci, Global Change Res Inst, Dept Matter & Energy Fluxes, Belidla 986-4a, Brno 60300, Czech Republic
推荐引用方式
GB/T 7714
Peltola, Olli,Vesala, Timo,Gao, Yao,et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations[J],2019,11(3):1263-1289.
APA Peltola, Olli.,Vesala, Timo.,Gao, Yao.,Raty, Olle.,Alekseychik, Pavel.,...&Aalto, Tuula.(2019).Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations.EARTH SYSTEM SCIENCE DATA,11(3),1263-1289.
MLA Peltola, Olli,et al."Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations".EARTH SYSTEM SCIENCE DATA 11.3(2019):1263-1289.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peltola, Olli]的文章
[Vesala, Timo]的文章
[Gao, Yao]的文章
百度学术
百度学术中相似的文章
[Peltola, Olli]的文章
[Vesala, Timo]的文章
[Gao, Yao]的文章
必应学术
必应学术中相似的文章
[Peltola, Olli]的文章
[Vesala, Timo]的文章
[Gao, Yao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。