CCPortal
DOI10.3390/w11081567
Long-Term Perspective Changes in Crop Irrigation Requirement Caused by Climate and Agriculture Land Use Changes in Rechna Doab, Pakistan
Arshad, Arfan1,2; Zhang, Zhijie3; Zhang, Wanchang1; Gujree, Ishfaq2,4
发表日期2019
EISSN2073-4441
卷号11期号:8
英文摘要

Climate change and agriculture land use changes in the form of cropping patterns are closely linked with crop water use. In this study the SDSM (statistical downscaling model) was used to downscale and simulate changes in meteorological parameters from 1961 to 2099 using HadCM3 General Circulation Model (GCM) data under two selected scenarios i.e., H3A2 and H3B2. Results indicated that T-max, T-min, and wind speed may increase while relative humidity and precipitation may decrease in the future under both H3A2 and H3B2 scenarios. Downscaled meteorological parameters were used as input in the CROPWAT model to simulate crop irrigation requirement (CIR) in the baseline (1961-1990) and the future (2020s, 2050s and 2080s). Data related to agriculture crop sown area of five major crops were collected from Punjab statistical reports for the period of 1981-2015 and forecasted using linear exponential smoothing based on the historical rate. Results indicated that the cropping patterns in the study area will vary with time and proportion of area of which sugarcane, wheat, and rice, may exhibit increasing trend, while decreasing trend with respect to the baseline scenario was found in maize and cotton. Crop sown area is then multiplied with CIR of individual crops derived from CROPWAT to simulate Net-CIR (m(3)) in three sub-scenarios S1, S2, and S3. Under the H3A2 scenario, total CIR in S1, S2, and S3 may increase by 3.26 BCM, 12.13 BCM, and 17.20 BCM in the 2080s compared to the baseline, while under the H3B2 scenario, Net-CIR in S1, S2, and S3 may increase by 2.98 BCM, 12.04 BCM, and 16.62 BCM in the 2080s with respect to the baseline. It was observed that under the S2 sub-scenario (with changing agriculture land-use), total CIR may increase by 12.13 BCM (H3A2) and 12.04 BCM (H3B2) in the 2080s with respect to the baseline (1961-1990) which is greater as compared to S1 (with changing climate). This study might be valuable in describing the negative effects of climate and agriculture land use changes on annual crop water supply in Rechna Doab.


WOS研究方向Water Resources
来源期刊WATER
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/101174
作者单位1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China;
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
3.Univ Connecticut, Dept Geog, CESE, Storrs, CT 06269 USA;
4.Chinese Acad Sci, Inst Tibetan Pleatue Res, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Arshad, Arfan,Zhang, Zhijie,Zhang, Wanchang,et al. Long-Term Perspective Changes in Crop Irrigation Requirement Caused by Climate and Agriculture Land Use Changes in Rechna Doab, Pakistan[J],2019,11(8).
APA Arshad, Arfan,Zhang, Zhijie,Zhang, Wanchang,&Gujree, Ishfaq.(2019).Long-Term Perspective Changes in Crop Irrigation Requirement Caused by Climate and Agriculture Land Use Changes in Rechna Doab, Pakistan.WATER,11(8).
MLA Arshad, Arfan,et al."Long-Term Perspective Changes in Crop Irrigation Requirement Caused by Climate and Agriculture Land Use Changes in Rechna Doab, Pakistan".WATER 11.8(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Arshad, Arfan]的文章
[Zhang, Zhijie]的文章
[Zhang, Wanchang]的文章
百度学术
百度学术中相似的文章
[Arshad, Arfan]的文章
[Zhang, Zhijie]的文章
[Zhang, Wanchang]的文章
必应学术
必应学术中相似的文章
[Arshad, Arfan]的文章
[Zhang, Zhijie]的文章
[Zhang, Wanchang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。