Climate Change Data Portal
DOI | 10.1111/evo.13798 |
Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress | |
Albecker, Molly A.; McCoy, Michael W. | |
发表日期 | 2019 |
ISSN | 0014-3820 |
EISSN | 1558-5646 |
卷号 | 73期号:9页码:1941-1957 |
英文摘要 | Organisms often respond to environmental change via phenotypic plasticity, in which an individual modulates its phenotype according to the environment. Highly variable or changing environments can exceed physiological limits and generate maladapted plastic phenotypes, which is termed nonadaptive plasticity. In some cases, selection may reduce the negative or disruptive impacts of environmental stress and produce locally adapted populations. Salt is an increasingly prevalent contaminant of freshwater systems and can induce nonadaptive plastic phenotypes for freshwater organisms like amphibians. Hyla cinerea is a frog species with populations inhabiting brackish, coastal habitats, so we use this species to test whether coastal populations are locally adapted to tolerate saltwater by determining how salt exposure during the embryonic and larval stages alters mortality and plastic developmental and metamorphic phenotypes of coastal and inland populations. Coastal frogs have higher survival, faster growth rates, and metamorphose sooner than inland frogs across salinities. Coastal frogs also metamorphose smaller (likely a consequence of earlier metamorphosis) yet maintain constant size, while higher salinities reduce metamorphic size for inland frogs. Coastal frogs evolved to minimize nonadaptive and disruptive impacts of saltwater during larval development and accelerate the larval period to reduce time spent in a stressful environment. |
WOS研究方向 | Environmental Sciences & Ecology ; Evolutionary Biology ; Genetics & Heredity |
来源期刊 | EVOLUTION
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/100609 |
作者单位 | East Carolina Univ, Dept Biol, Greenville, NC 27858 USA |
推荐引用方式 GB/T 7714 | Albecker, Molly A.,McCoy, Michael W.. Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress[J],2019,73(9):1941-1957. |
APA | Albecker, Molly A.,&McCoy, Michael W..(2019).Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress.EVOLUTION,73(9),1941-1957. |
MLA | Albecker, Molly A.,et al."Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress".EVOLUTION 73.9(2019):1941-1957. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。