CCPortal
DOI10.5194/bg-16-2661-2019
What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?
Wu, Yingxu1; Hain, Mathis P.2; Humphreys, Matthew P.1,3; Hartman, Sue4; Tyrrell, Toby1
发表日期2019
ISSN1726-4170
EISSN1726-4189
卷号16期号:13页码:2661-2681
英文摘要

Previous work has not led to a clear understanding of the causes of spatial pattern in global surface ocean dissolved inorganic carbon (DIC), which generally increases polewards. Here, we revisit this question by investigating the drivers of observed latitudinal gradients in surface salinity-normalized DIC (nDIC) using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database. We used the database to test three different hypotheses for the driver producing the observed increase in surface nDIC from low to high latitudes. These are (1) sea surface temperature, through its effect on the CO2 system equilibrium constants, (2) salinity-related total alkalinity (TA), and (3) high-latitude upwelling of DIC- and TA-rich deep waters. We find that temperature and upwelling are the two major drivers. TA effects generally oppose the observed gradient, except where higher values are introduced in upwelled waters. Temperature-driven effects explain the majority of the surface nDIC latitudinal gradient (182 of the 223 mu mol kg(-1) increase from the tropics to the high-latitude Southern Ocean). Upwelling, which has not previously been considered as a major driver, additionally drives a substantial latitudinal gradient. Its immediate impact, prior to any induced air-sea CO2 exchange, is to raise Southern Ocean nDIC by 220 mu mol kg(-1) above the average low-latitude value. However, this immediate effect is transitory. The long-term impact of upwelling (brought about by increasing TA), which would persist even if gas exchange were to return the surface ocean to the same CO2 as without upwelling, is to increase nDIC by 74 mu mol kg(-1) above the low-latitude average.


WOS研究方向Environmental Sciences & Ecology ; Geology
来源期刊BIOGEOSCIENCES
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/100433
作者单位1.Univ Southampton, Natl Oceanog Ctr Southampton, Southampton, Hants, England;
2.Univ Calif Santa Cruz, Earth & Planetary Sci, Santa Cruz, CA 95064 USA;
3.Univ East Anglia, Ctr Ocean & Atmospher Sci, Sch Environm Sci, Norwich, Norfolk, England;
4.Natl Oceanog Ctr, Southampton, Hants, England
推荐引用方式
GB/T 7714
Wu, Yingxu,Hain, Mathis P.,Humphreys, Matthew P.,et al. What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?[J],2019,16(13):2661-2681.
APA Wu, Yingxu,Hain, Mathis P.,Humphreys, Matthew P.,Hartman, Sue,&Tyrrell, Toby.(2019).What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?.BIOGEOSCIENCES,16(13),2661-2681.
MLA Wu, Yingxu,et al."What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?".BIOGEOSCIENCES 16.13(2019):2661-2681.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Yingxu]的文章
[Hain, Mathis P.]的文章
[Humphreys, Matthew P.]的文章
百度学术
百度学术中相似的文章
[Wu, Yingxu]的文章
[Hain, Mathis P.]的文章
[Humphreys, Matthew P.]的文章
必应学术
必应学术中相似的文章
[Wu, Yingxu]的文章
[Hain, Mathis P.]的文章
[Humphreys, Matthew P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。