CCPortal

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery 期刊论文
Earth Science Reviews, 2021, 卷号: 217
作者:  Chandra D.;  Vishal V.
收藏  |  浏览/下载:33/0  |  提交时间:2021/09/01
Digital reconstruction  Flow modeling  Image analysis  Imaging  Pore network modeling  Shale  
Comparison of various 3D pore space reconstruction methods and implications on transport properties of nanoporous rocks 期刊论文
, 2020, 卷号: 141
作者:  Tinet A.-J.;  Corlay Q.;  Collon P.;  Golfier F.;  Kalo K.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/28
Digital storage  Flow of fluids  Image reconstruction  Nanopores  Radioactive waste transportation  Stochastic systems  Underground gas storage  Volume rendering  3d volume renderings  Effective diffusion  Euler characteristic  Longitudinal dispersions  Morphological features  Multiple-point statistics  Stochastic reconstruction  Transfer mechanisms  Transport properties  comparative study  connectivity  fluid flow  permeability  pore space  reconstruction  rock mechanics  topology  transport process  
On the influence of boundary conditions when determining transport coefficients from digital images of heterogeneous media. 期刊论文
, 2020, 卷号: 141
作者:  Thovert J.-F.;  Mourzenko V.V.
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/28
Boundary conditions  Flow of fluids  Tomography  Characteristic length  Comparative assessment  Conductivity tensors  Diffusion equations  Macroscopic transport  Quantitative indicators  Transport coefficient  Transport mechanism  Risk assessment  boundary condition  digital image  heterogeneous medium  hydraulic conductivity  permeability  sampling  tomography  transport process  upscaling  
PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media 期刊论文
, 2020, 卷号: 138
作者:  Santos J.E.;  Xu D.;  Jo H.;  Landry C.J.;  Prodanović M.;  Pyrcz M.J.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/28
Binary images  Convolution  Deep learning  Deep neural networks  Flow fields  Flow of fluids  Forecasting  Learning systems  Mechanical permeability  Network architecture  Porous materials  Velocity  Disruptive technology  Fluid velocity field  Geometrical informations  Machine learning models  Orders of magnitude  Spatial relationships  Subsurface formations  Surrogate model  Convolutional neural networks  artificial neural network  digital image  flow modeling  fluid flow  permeability  porous medium  prediction  rock mechanics  surrogate method  three-dimensional modeling  
Analysis and improvement of ramp gain error in single-ramp single-slope ADCs for CMOS image sensors 期刊论文
MICROELECTRONICS JOURNAL, 2016, 卷号: 58
作者:  Cheng, Xu;  Zeng, Xiaoyang;  Feng, Qi
收藏  |  浏览/下载:20/0  |  提交时间:2019/11/08
CMOS image sensor (CIS)  Analog-to-digital converter (ADC)  Column-parallel ADC  Single-slope ADC  Two-step ADC