CCPortal

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
A review of modelling methodologies for flood source area (FSA) identification 期刊论文
Natural Hazards, 2021, 卷号: 107, 期号: 2
作者:  Singh A.;  Dawson D.;  Trigg M.;  Wright N.
收藏  |  浏览/下载:25/0  |  提交时间:2021/09/01
Adaptation  Flood source areas  Flood sources identification  Flooding  Hydrological modelling  Unit flood response  Variable source areas  
Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations 期刊论文
ATMOSPHERIC ENVIRONMENT, 2021, 卷号: 244
作者:  Sari M.F.;  Esen F.;  Tasdemir Y.
收藏  |  浏览/下载:38/0  |  提交时间:2022/01/18
Biomonitoring  PCBs  Pollen/air partitioning  POPs  Sources identification  
Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms 期刊论文
, 2020, 卷号: 138
作者:  Zhao Y.;  Qu R.;  Xing Z.;  Lu W.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/28
Contamination  Efficiency  Genetic algorithms  Groundwater  Groundwater pollution  Heuristic algorithms  Knowledge acquisition  Learning algorithms  Machine learning  Modular robots  Particle swarm optimization (PSO)  Quantum computers  Contaminant concentrations  Contaminant sources  Extreme learning machine  Groundwater contaminants  Heuristic optimization algorithms  Heuristic search algorithms  Source characteristics  Traditional genetic algorithms  Computational efficiency  accuracy assessment  genetic algorithm  groundwater pollution  identification method  machine learning  optimization  reliability analysis  surrogate method  
PM2.5 Humic-like substances over Xi'an, China: Optical properties, chemical functional group, and source identification 期刊论文
, 2020, 卷号: 234
作者:  Zhang T.;  Shen Z.;  Zhang L.;  Tang Z.;  Zhang Q.;  Chen Q.;  Lei Y.;  Zeng Y.;  Xu H.;  Cao J.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/28
Elementary particle sources  Fourier transform infrared spectroscopy  Spectrometers  Chemical functional groups  Chemical group  Dispersive distribution  Fine particulate matter (PM2.5)  Humic-like substances  Secondary organic aerosols  Source identification  UV-vis spectrometer  Optical properties  chemical property  FTIR spectroscopy  humic substance  optical property  particulate matter  source identification  urban atmosphere  China  Shaanxi  Xian  
Intensive optical parameters of pollution sources identified by the positive matrix factorization technique 期刊论文
, 2020, 卷号: 244
作者:  Romano S.;  Vecchi R.;  Perrone M.R.
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/28
Bayesian networks  Factorization  Matrix algebra  Nephelometers  Optical variables control  Pollution  Reliability analysis  Sulfur compounds  Ammonium sulphate  Asymmetry parameter  Intensive parameters  Mass scattering efficiency  Optical parameter  Pm10 mass concentrations  Pollution sources  Positive Matrix Factorization  Parameter estimation  air quality  atmospheric pollution  backscatter  concentration (composition)  factor analysis  matrix  numerical model  particulate matter  pollutant source  pollution monitoring  source identification