×
验证码:
换一张
忘记密码?
记住我
×
登录
中文版
|
English
气候变化领域集成服务门户
Climate Change Data Portal
登录
注册
ALL
题名
作者
发表日期
学科领域
关键词
文献类型
来源机构
存缴日期
收录类别
出版者
资助项目
学科门类
来源期刊
图片搜索
粘贴图片网址
首页
科技资讯
快报文章
研究成果
期刊论文
科技报告
情报产品
数据集
专著
领域专家
研究机构
基金项目
学术会议
态势分析
在结果中检索
作者
Grana D. [1]
Jo H. [1]
Landry C.J... [1]
Liu M. [1]
Prodanović... [1]
Pyrcz M.J. [1]
更多...
文献类型
期刊论文 [3]
发表日期
2020 [3]
语种
英语 [3]
来源机构
Advances i... [3]
×
知识图谱
CCPortal
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
扫一扫
浏览/检索结果:
共3条,第1-3条
帮助
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
作者升序
作者降序
题名升序
题名降序
WOS被引频次升序
WOS被引频次降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
关注程度降序
期刊影响因子升序
期刊影响因子降序
Petrophysical characterization of deep saline aquifers for CO2 storage using ensemble smoother and deep convolutional autoencoder
期刊论文
, 2020, 卷号: 142
作者:
Liu M.
;
Grana D.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2020/07/28
Aquifers
Boreholes
Carbon capture
Carbon dioxide
Convolution
Digital storage
Forecasting
Geological surveys
Hydrogeology
Inverse problems
Large dataset
Offshore oil well production
Petrophysics
Porosity
Seismology
Stochastic systems
Carbon dioxide sequestration
Deep saline aquifers
Ensemble-based method
Machine learning methods
Monitoring measurements
Petro-physical characterizations
Petrophysical properties
Stochastic approach
Learning systems
accuracy assessment
aquifer
carbon dioxide
carbon sequestration
carbon storage
leakage
monitoring
permeability
physical property
porosity
precision
underground storage
PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media
期刊论文
, 2020, 卷号: 138
作者:
Santos J.E.
;
Xu D.
;
Jo H.
;
Landry C.J.
;
Prodanović M.
;
Pyrcz M.J.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2020/07/28
Binary images
Convolution
Deep learning
Deep neural networks
Flow fields
Flow of fluids
Forecasting
Learning systems
Mechanical permeability
Network architecture
Porous materials
Velocity
Disruptive technology
Fluid velocity field
Geometrical informations
Machine learning models
Orders of magnitude
Spatial relationships
Subsurface formations
Surrogate model
Convolutional neural networks
artificial neural network
digital image
flow modeling
fluid flow
permeability
porous medium
prediction
rock mechanics
surrogate method
three-dimensional modeling
Seeing macro-dispersivity from hydraulic conductivity field with convolutional neural network
期刊论文
, 2020, 卷号: 138
作者:
Zhou Z.
;
Shi L.
;
Zha Y.
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2020/07/28
Convolution
Deep learning
Deep neural networks
Groundwater
Groundwater pollution
Hydraulic conductivity
Learning algorithms
Learning systems
Porous materials
Solute transport
Contaminant transport
Convolutional neural work
Groundwater environment
Heterogeneity
Macrodispersivity
Quantitative relations
Spatial heterogeneity
Trained neural networks
Convolutional neural networks
algorithm
artificial neural network
computer simulation
groundwater
heterogeneity
hydraulic conductivity
machine learning