换一张
忘记密码?
取消 登录
登录
取消
中文版 | English

气候变化领域集成服务门户

Climate Change Data Portal

RSS Feed  RSS Feed 
   登录 注册
图片搜索

   粘贴图片网址
  • 首页
  • 科技资讯
  • 快报文章
  • 研究成果
    • 期刊论文
    • 科技报告
    • 情报产品
    • 数据集
    • 专著
  • 领域专家
  • 研究机构
  • 基金项目
  • 学术会议
  • 态势分析
CCPortal
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
    扫一扫
Geoscientists Use Zircon to Trace Origin of Earth's Continents  科技资讯
时间:2020-12-01   来源:[美国] ScienceDaily

Geoscientists have long known that some parts of the continents formed in the Earth's deep past, but the speed in which land rose above global seas -- and the exact shapes that land masses formed -- have so far eluded experts.

advertisement

But now, through analyzing roughly 600,000 mineral analyses from a database of about 7,700 different rock samples, a team led by Jesse Reimink, assistant professor of geosciences at Penn State, thinks they're getting closer to the answers.

The researchers say that Earth's land masses began to slowly rise above sea level about 3 billion years ago. When their interpretation is combined with previous work, including work from other Penn State researchers, it suggests that continents took roughly 500 million years to rise to their modern heights, according to findings recently published in Earth and Planetary Science Letters.

To reach this conclusion, scientists applied a unique statistical analysis to crystallization ages from the mineral zircon, which is reliably dateable and is frequently found in sedimentary rocks. While these researchers did not date these samples, the samples were all dated using the the uranium-lead decay system. This method measures the amount of lead in a sample and calculates from the well established rate of uranium decay, the age of the crystal. When zirconium forms, no lead is incorporated into its structure, so any lead is from uranium decay.

The minerals found in the sedimentary rock samples originally formed in older magmas but, through erosion and transport, traveled in rivers and were eventually deposited in the ocean where they were turned into sedimentary rock beneath the surface of the sea floor. The ages of zircons retrieved from individual rock samples can be used to tell the type of continent they were eroded from.

The ages of zircons from Eastern North American rocks are, for instance, different from those of land masses such as Japan, which was formed by much more recent volcanic activity.

"If you look at the Mississippi River, it's eroding rocks and zircons from all over North America. It's gathering mineral grains that have a massive age range from as young as a million years to as old as a few billions of years," Reimink said. "Our analysis suggests that as soon as sediment started to be formed on Earth they were formed from sedimentary basins with a similarly large age range."

Sediments are formed from weathering of older rocks, and carry the signature of past landmass in time capsules such as zircons. The research doesn't uncover the overall size of primordial continents, but it does speculate that modern-scale watersheds were formed as early as 2.7 billion years ago.

"Our research matches nicely with the preserved rock record," Reimink said.

This finding is critical for a few reasons. First, knowing when and how the continents formed advances research on the carbon cycle in the land, water and atmosphere. Secondly, it gives us clues as to the early origins of Earth. That could prove useful as we discover more about life and the formation of other planets. Earth is a life-sustaining planet, in part, because of how continental crust influences our atmospheric and oceanic composition. Knowing how and when these processes occurred could hold clues to the creation of life.

"Whenever we're able to determine processes that led to our existence, it relates to the really profound questions such as: Are we unique? Is Earth unique in the universe? And are there other Earths out there," Reimink said. "These findings help lead us down the path to the answers we need about Earth that allow us to compare our planet to others."

The Natural Sciences and Engineering Research Council of Canada partially supported this work.

make a difference: sponsored opportunity

     原文来源:https://www.sciencedaily.com/releases/2020/12/201201153424.htm

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

  • 首页
  • 研究主题分布
  • 研究合作网络
  • 专利分析
  • 收录类型分布图
  • 论文引用排行
  • 作者
  • 资源类型
  • 联系我们
  • 条目量:303522
  • 全文量:2939
  • 浏览量:7146872
  • 下载量:55602
版权所有 @2025 中国科学院兰州文献情报中心 - Powered by CSpace
  • 地址邮编:
  •   
  • 电话:
  •