换一张
忘记密码?
取消 登录
登录
取消
中文版 | English

气候变化领域集成服务门户

Climate Change Data Portal

RSS Feed  RSS Feed 
   登录 注册
图片搜索

   粘贴图片网址
  • 首页
  • 科技资讯
  • 快报文章
  • 研究成果
    • 期刊论文
    • 科技报告
    • 情报产品
    • 数据集
    • 专著
  • 领域专家
  • 研究机构
  • 基金项目
  • 学术会议
  • 态势分析
CCPortal
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
    扫一扫
New Insight Into the Origin of Water on Earth  科技资讯
时间:2020-07-17   来源:[美国] ScienceDaily

Scientists have found the interstellar organic matter could produce an abundant supply of water by heating, suggesting that organic matter could be the source of terrestrial water.

advertisement

There remains a number of mysteries on our planet including the elusive origin of water on the earth. Active studies suggested that terrestrial water had been delivered by icy comets or meteorites containing hydrous silicates that came from outside the "snow line" -- the boundary beyond which ice can condense due the low temperatures. More recent studies, however, have provided observations opposing to cometary origin theory, yet still failing to suggest plausible substitutions for the source of terrestrial water. "Until now, much less attention has been paid to organic matter, comparing to ices and silicates, even though there is an abundance inside the snow line" says planetary scientist Akira Kouchi at Hokkaido University.

In the recent study published in Scientific Reports, a group of scientists led by Akira Kouchi demonstrates that heating of the interstellar organic matter at high temperature could yield abundant water and oil. This suggests that water could be produced inside the snow line, without any contribution of comets or meteorites delivered from outside the snow line.

As a first step, the researchers made an analog of organic matter in interstellar molecular clouds using chemical reagents. To make the analog, they referred to analytical data of interstellar organics made by irradiating UV on a mixture containing H2O, CO, and NH3, which mimicked its natural synthetic process. Then, they gradually heated the organic matter analog from 24 to 400 ? under a pressured condition in a diamond anvil cell. The sample was uniform until 100 ?, but was separated into two phases at 200 ?. At approximately 350 ?, the formation of water droplets became evident and the sizes of the droplets increased as the temperature rose. At 400 ?, in addition to water droplets, black oil was produced.

The group conducted similar experiments with larger amounts of organic matter, which also yielded water and oil. Their analysis of absorption spectra revealed that the main component of the aqueous product was pure water. Additionally, chemical analysis of produced oil showed similar characteristics to the typical crude oil found beneath the earth.

"Our results show that the interstellar organic matter inside the snow line is a potential source of water on the earth. Moreover, the abiotic oil formation we observed suggests more extensive sources of petroleum for the ancient Earth than previously thought," says Akira Kouchi. "Future analyses of organic matter in samples from the asteroid Ryugu, which the Japan's asteroid explorer Hayabusa2 will bring back later this year, should advance our understanding of the origin of terrestrial water."

make a difference: sponsored opportunity

     原文来源:https://www.sciencedaily.com/releases/2020/07/200717120158.htm

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

  • 首页
  • 研究主题分布
  • 研究合作网络
  • 专利分析
  • 收录类型分布图
  • 论文引用排行
  • 作者
  • 资源类型
  • 联系我们
  • 条目量:303522
  • 全文量:2939
  • 浏览量:7215972
  • 下载量:56004
版权所有 @2025 中国科学院兰州文献情报中心 - Powered by CSpace
  • 地址邮编:
  •   
  • 电话:
  •