换一张
忘记密码?
取消 登录
登录
取消
中文版 | English

气候变化领域集成服务门户

Climate Change Data Portal

RSS Feed  RSS Feed 
   登录 注册
图片搜索

   粘贴图片网址
  • 首页
  • 科技资讯
  • 快报文章
  • 研究成果
    • 期刊论文
    • 科技报告
    • 情报产品
    • 数据集
    • 专著
  • 领域专家
  • 研究机构
  • 基金项目
  • 学术会议
  • 态势分析
CCPortal
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
    扫一扫
Tight Spaces Tip Presence of Petrochemicals  科技资讯
时间:2020-04-13   来源:[美国] ScienceDaily

Rice University engineers have put to rest a long-held theory about the detection of oil and gas that hides inside the nanoscale pores of shale formations.

advertisement

The Rice researchers determined that puzzling indicators from nuclear magnetic resonance (NMR) tools are not due, as thought, to the paramagnetic properties of the rock but solely to the size of the space that traps the petrochemicals.

The team expects the discovery will lead to better interpretation of NMR logs by the oil and gas industry, especially in unconventional shale formations.

The study's authors -- senior investigators Dilip Asthagiri, Philip Singer, George Hirasaki and Walter Chapman and graduate student Arjun Valiya Parambathu, all of the Brown School of Engineering's Department of Chemical and Biomolecular Engineering -- have been at the forefront in using atomistic simulations to refine how to interpret NMR relaxation behavior.

Their paper in the Journal of Physical Chemistry B builds on earlier work from the same group and elucidates the critical role of molecular confinement on NMR relaxation response.

NMR relaxation is an important tool to nondestructively measure the dynamics of molecules in porous materials. NMR is commonly used to detect diseased tissues in the human body, but is also employed to help extract oil and gas safely and economically by characterizing sedimentary rocks to see if they contain hydrocarbons.

advertisement

NMR manipulates the nuclear magnetic moments of hydrogen nuclei by applying external magnetic fields and measuring the time it takes for the moments to "relax" back to equilibrium. Because relaxation times differ depending on the molecule and its environment, the information gathered by NMR, specifically the relaxation times known as T1 and T2, can help identify whether a molecule is gas, oil or water and the size of the pores that contain them.

A puzzle in the field has been to explain the large T1/T2 ratio of light hydrocarbons confined in such nanoporous material as kerogen or bitumen (aka asphalt) and the mechanism behind NMR surface relaxation, a phenomenon that emerges when formerly free molecules are adjacent to the surfaces that confine them.

Specifically, the researchers note, the T1/T2 ratio of hydrocarbons in kerogen is found to be much larger than the T1/T2 ratio of water in clays. While this contrast in T1/T2 has potential for predicting hydrocarbon reserves in unconventional shale formations, the fundamental mechanism behind it remained elusive.

The conventional explanation of the large T1/T2 ratio in kerogen invoked the physics of paramagnetism that dictate how materials respond to magnetic fields.

Through large-scale atomistic simulations by Valiya Parambathu, Chapman and Asthagiri and experiments by Singer and Hirasaki, the Rice team showed that explanation is not correct.

In the study, the team showed instead that the large T1/T2 ratio emerges as a consequence of confining the hydrocarbon in a tight space.

"In physical terms, under strong confinement, the correlation times of the molecular motions get longer," Asthagiri said.

"These longer correlation times result in faster NMR relaxation -- that is shorter T1 and T2 times," Singer added. "This effect is more pronounced for T2 than it is for T1, which results in a large T1/T2 ratio."

Chapman noted the team is also interested in exploring ideas presented in the paper in the context of medical MRI.

make a difference: sponsored opportunity

     原文来源:https://www.sciencedaily.com/releases/2020/04/200413140509.htm

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

  • 首页
  • 研究主题分布
  • 研究合作网络
  • 专利分析
  • 收录类型分布图
  • 论文引用排行
  • 作者
  • 资源类型
  • 联系我们
  • 条目量:303522
  • 全文量:2939
  • 浏览量:7192358
  • 下载量:55850
版权所有 @2025 中国科学院兰州文献情报中心 - Powered by CSpace
  • 地址邮编:
  •   
  • 电话:
  •