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Conversion Factors 

[U.S. Customary units to International System of Units] 
Multiply By To obtain 

Length 

foot (ft) 0.3048 meter (m) 

mile (mi) 1.609 kilometer (km) 

Area 

square mile (mi2)  2.590 square kilometer (km2)  

Volume 

milliliter (mL) 0.0338 ounce, fluid (oz) 

cubic foot (ft3) 28.32 cubic decimeter (dm3)  

Flow rate 

cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s) 

milligram per liter (mg/L) 1 parts per million (ppm) 

Mass 

milligram (mg) 0.001 gram (g) 

 
Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: 
°F=(1.8×°C)+32 
Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows: 
°C=(°F-32)/1.8 
Horizontal coordinate information is referenced to the North American Datum of 1927 (NAD 27). 
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C). 
Concentrations of chemical constituents in water are given in milligrams per liter (mg/L). 
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Relations between Continuous Real-Time Physical 
Properties and Discrete Water-Quality Constituent 
Concentrations in the Little Arkansas River, South-Central 
Kansas, 1998–2014 

By Patrick P. Rasmussen, Patrick J. Eslick, and Andrew C. Ziegler     
   

Abstract  

Water from the Little Arkansas River is used as source water for artificial recharge of the Equus 
Beds aquifer, one of the primary water-supply sources for the city of Wichita, Kansas. The U.S. 
Geological Survey has operated two continuous real-time water-quality monitoring stations since 1995 
on the Little Arkansas River in Kansas. Regression models were developed to establish relations 
between discretely sampled constituent concentrations and continuously measured physical properties to 
compute concentrations of those constituents of interest. Site-specific regression models were originally 
published in 2000 for the near Halstead and near Sedgwick U.S. Geological Survey streamgaging 
stations and the site-specific regression models were then updated in 2003. This report updates those 
regression models using discrete and continuous data collected during May 1998 through August 2014. 
In addition to the constituents listed in the 2003 update, new regression models were developed for total 
organic carbon. The real-time computations of water-quality concentrations and loads are available at 
http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita 
because water-quality information allows for real-time quantification and characterization of chemicals 
of concern (including chloride), in addition to nutrients, sediment, bacteria, and atrazine transported in 
the Little Arkansas River. The water-quality information in this report aids in the decision making for 
water treatment before artificial recharge.  

Introduction 

The Equus Beds Aquifer Storage and Recovery (ASR) Program began in 1995 (Ziegler and 
others, 1999) with the primary goals of restoring capacity to the Equus Beds aquifer to ensure adequate 
water quantity for the city of Wichita and the surrounding area in south-central Kansas and of slowing 
or stopping the migration of saltwater contamination to the aquifer. Monitoring for the ASR Program 
was a cooperative effort between the city of Wichita and the U.S. Geological Survey (USGS). 
Additional participants include the Bureau of Reclamation (BOR, U.S. Department of the Interior); the 
Equus Beds Groundwater Management District No. 2 (GMD2); Kansas Water Office; Kansas 
Department of Agriculture, Division of Water Resources; Kansas Department of Health and 
Environment; and the U.S. Environmental Protection Agency (EPA). Water from the Little Arkansas 
River is used as source water for artificial recharge of the Equus Beds aquifer. The Equus Beds ASR 
Program became operational in two phases; Phase I began in 2007, and Phase II began in 2013. The 

http://nrtwq.usgs.gov/
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facilities have an overall design capacity to treat and artificially recharge about 40 million gallons per 
day (Stone and others, 2012).  

During the ASR Program, surface water at the USGS streamgaging stations on the Little 
Arkansas River at Highway 50 near Halstead (07143672, fig. 1) and the Little Arkansas River near 
Sedgwick (07144100, fig. 1), hereinafter near Halstead and near Sedgwick streamgaging station, 
respectively, was sampled to evaluate the quality of the source water. In addition, real-time water-
quality monitors at the two stations provided continuous measures of specific conductance, pH, water 
temperature, dissolved oxygen, and turbidity. Regression models based on surrogate physical properties 
measured in real time are useful in the computation of water-quality constituent concentrations to 
support water treatment and recharge decisions, compare to water-quality criteria, and compute loads 
and yields to assess watershed transport.  

Purpose and Scope 

The purpose of this report is to update and document site-specific regression models to compute 
concentrations of selected constituents using statistical relations between continuous and discrete water-
quality data collected from the Little Arkansas River (USGS stations 07143672 and 07144100; fig. 1). 
Site-specific regression models were developed for the near Halstead and near Sedgwick streamgaging 
stations to assist with decision making for the city of Wichita to adjust water treatment and for reporting 
the quality of water used for aquifer recharge. The original regression models for these sites were 
published by Christensen and others (2000). The Christensen and others (2003) updates the models 
using continuous in-stream sensor measurements to compute selected constituent concentrations and 
loads in the Little Arkansas River. This report documents site-specific regression models for the 
computation of continuous concentrations of hardness, dissolved solids, total suspended solids, calcium, 
sodium, alkalinity, bicarbonate, chloride, sulfate, total organic nitrogen, total phosphorus, Escherichia 
coli bacteria (E. coli), fecal coliform bacteria (fecal coliform), arsenic, atrazine, and suspended-sediment 
from January 1, 2007 onward. Additionally, regression models for total organic carbon were developed. 
The real-time computations of water-quality concentrations and loads are available at 
http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita 
because it allows for real-time quantification and characterization of chemicals of concern, including 
chloride, nutrients, sediment, bacteria, and atrazine transported in the Little Arkansas River. 

Description of Study Area 

The study area is located in south-central Kansas (fig. 1). The two data-collection sites involved 
in this study are USGS streamgaging stations on the Little Arkansas River at Highway 50 near Halstead 
and the Little Arkansas River near Sedgwick. The near Halstead streamgaging station has a contributing 
drainage area of about 685 square miles. The near Sedgwick streamgaging station has a contributing 
drainage area of 1,165 square miles (Christensen and others, 2000). Streamflow at both stations is 
affected by groundwater withdrawals, surface-water diversions, and return flow from irrigated areas 
(Putnam and others, 2000).  

Land use in the Little Arkansas River Basin is primarily agricultural. In the study area, land use 
is about 70 percent cropland and 24 percent grassland (Peterson and others, 2005). The percentages of 
each crop type for the Little Arkansas River at Highway 50 near Halstead subbasin are about 66 percent 
wheat, 6 percent sorghum, 4 percent soybeans, 13 percent corn, and 8 percent alfalfa. Common 
agricultural chemicals applied to these crops include fertilizers (such as nitrate, ammonia, and 
phosphorus) and herbicides (such as alachlor and atrazine). Livestock raised in the area include cattle 
and hogs (Kansas Department of Agriculture, 2006).  

http://nrtwq.usgs.gov/
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Figure 1. Map showing land use in Little Arkansas River Basin and location of pertinent boundaries and sites. 
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The study area is underlain by the Equus Beds aquifer, the easternmost extent of the larger High 
Plains aquifer. The Equus Beds aquifer (as much as 300-feet thick) consists of alluvial deposits of sand 
and gravel interbedded with clay or silt and is an important source of groundwater because of the good 
water quality, shallow depth to the water table, and large saturated thickness (Williams and Lohman, 
1949). The general direction of groundwater movement within the study area is to the east-northeast 
(Aucott and others, 1998) except where the hydraulic gradient is altered by pumping wells and near a 
low-head dam on the Little Arkansas River at Halstead. The Little Arkansas River generally is a gaining 
stream within the study area as indicated by higher water levels in wells adjacent to the stream 
compared to water levels in the stream (Myers and others, 1996; Aucott and others, 1998). The Little 
Arkansas River is not a gaining stream near Halstead where a low-head dam about 2 river miles 
downstream from the Near Halstead streamgaging station causes higher water levels in the stream than 
in the adjacent aquifer resulting in stream-water recharge to the aquifer in this area. 

Methods 

Regression models for real-time computation of concentrations of hardness, dissolved solids, 
total suspended solids, calcium, sodium, alkalinity, bicarbonate, chloride, sulfate, total organic nitrogen, 
total phosphorus, Escherichia coli bacteria (E. coli), fecal coliform bacteria (fecal coliform), arsenic, 
atrazine, and suspended-sediment were updated from Christensen and others (2000, 2003). Additionally, 
regression models for total organic carbon were developed in this study. Methods for development of 
models, quantifying uncertainty, and determining probability of exceeding criteria are given in 
Rasmussen and others (2009) and at http://nrtwq.usgs.gov/ks/methods/. Model calibration periods were 
from 1998 to 2014 for all constituents, except for models that contained turbidity (calibration period 
2004–2014), and except for models that contained total suspended solids (model calibration period 
2005–2014). The updated and new total organic carbon models are applied to data collected from 
January 1, 2007 onward (appendixes 1 and 2). Methods for the collection and quality assurance of 
continuous streamflow and continuous and discrete water-quality data are available in detail in the 
following references: Sauer and Turnipseed (2010), Turnipseed and Sauer (2010), Wagner and others 
(2006), Wilde and Radke (1998), Ziegler and Combs (1997), and Ziegler and others (2010). 

Constituent concentrations in surface water commonly are strongly statistically and physically 
related to other constituent concentrations and factors like streamflow, turbidity, and specific 
conductance. Expressing one constituent concentration in terms of a physical property and other stream 
variables can be done using simple or multiple linear regression models (Helsel and Hirsch, 2002). In 
most cases in this report, the explanatory variables have to have a physical basis to be included in the 
regression model. General examples of explanatory variables having a physical basis include the  
specific conductance of water caused by dissolved cations and anions in water or suspended sediment 
causes water to be turbid. Others are less direct, like total phosphorus, total organic nitrogen, total 
organic carbon, and indicator bacteria are associated with and are part of suspended sediment and 
atrazine concentrations are greatest during high streamflow or periods of low specific conductance and 
during the spring after application of herbicides. Regression models provide the continuous and real-
time computation of constituent concentrations that are not measured continuously using variables 
measured continuously, such as streamflow, water temperature, dissolved oxygen, specific conductance, 
pH, and turbidity. The method of model development using simple or multiple linear regression is 
described by Helsel and Hirsch (2002). 

Additionally, Helsel and Hirsch (2002) describe the calculation and use of many of the 
regression statistics reported here or used in the selection of the preferred model, including root mean 
square error (RMSE) or standard error of the regression, coefficient of determination (R2), adjusted 

http://nrtwq.usgs.gov/ks/methods/
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coefficient of determination (adjR2), Mallow’s Cp, prediction error sum of squares (PRESS), and 
variance inflation factor (VIF) (Marquardt, 1970). The calculation and use of model standard percentage 
error (MSPE) is described by Rasmussen and others (2009). The bias correction factor or smear factor 
(BCF) is described in Duan (1983). The regression statistics and metrics used in this study are 
summarized and discussed in the Model Archive Summaries (MAS) in appendixes 1 and 2.  

Continuously measured in-stream properties were interpolated to match the same mean time of 
the discrete sample collection (Rasmussen and others, 2009). In the case that the continuous 
measurement of a physical property (water temperature, specific conductance (SC), or turbidity) 
corresponding to the same time and date of a discrete water-quality sample was unavailable or unable to 
be accurately computed from continuous data, the discrete water-quality sample was excluded from the 
regression. Individual samples with a studentized residual greater than 3.0 or less than -3.0 and a high 
Cook’s D, as determined in Helsel and Hirsch (2002), were identified as outliers and removed.  

Some constituents had sample results that were less than the laboratory reporting level or 
minimum reporting level (MRL). Such results are reported as "less-than" the MRL when the analyte is 
either not detected or detected at a concentration less than the level (Childress and others, 1999). 
Constituent datasets with nondetects (left-censored data) near Halstead station include 4 percent of total 
suspended sediment (TSS) samples, 1.4 percent of sulfate samples, 3 percent of arsenic samples, and 3.2 
percent of atrazine samples. Constituent datasets with nondetects at near Sedgwick station include 3.7 
percent of TSS samples, 2.5 percent of chloride samples, 2.2 percent of sulfate samples, and less than 1 
percent of atrazine samples. The data initially were analyzed using tobit regression (Hald, 1949; Cohen, 
1959). After the tobit regressions were completed, the nondetects arbitrarily were assigned a value of 
one-half of the censoring level and were analyzed in the same manner as the constituent datasets without 
nondetects (Helsel, 2005). The resulting regression coefficients were compared with the tobit regression 
coefficients. The comparison of the regression coefficients using an assigned value at one-half the 
detection limit and tobit were nearly identical because there were few nondetections for the models 
developed. In datasets with a substantial percentage of nondetections, a tobit regression model would be 
preferred. 

The use of regression models has limitations. A regression model between the response and 
explanatory variables generally is site specific and potentially changes throughout time if the constituent 
sources change or improved sensor technology becomes available. For example, turbidity measurements 
are affected by the physical properties of suspended-sediment particles such as size, color, and density 
(Anderson, 2004). These suspended-sediment properties are affected by complex watershed properties 
such as stream morphologic characteristics, land-use distribution, and so forth. All of these complexities 
are simplified and combined into the regression model coefficients. It is unlikely that any two streams or 
even one stream at two locations would have identical suspended-sediment properties. Suspended- 
sediment properties at one location may change over a range of time; therefore, regression analysis is 
site specific, and the regression model must be verified by continued sample collection and refined as 
needed (Rasmussen and others, 2009). 

Multiple regression models were developed and evaluated to find the one that was best for 
continuously computing each constituent of interest.  The regression statistics RMSE, PRESS, and 
Mallow’s Cp were used to narrow the list of possible models. In general, only the models with the 
lowest RMSE, PRESS, and Mallow’s Cp (only comparable for models with the same response variable, 
that is, response variable TSS is not comparable with log[TSS]) were given further consideration. 
Models containing multiple transformations of the same physical property (for example, streamflow [Q] 
and log10[Q]) were not considered. The preferred model was selected using the following process and 
criteria:  
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1) Response variable transformation was based on plots of residuals as compared to computed 
values (provided in appendixes 1 and 2); if the pattern of the residuals from a simple-linear 
regression (SLR) model was heteroscedastic (non-uniform residuals), then a log-transformed 
model was preferred. 
 

2) If the p-value for an additional explanatory variable was less than 0.05, then it was retained in a 
multiple-linear regression (MLR) model; otherwise, the additional explanatory variable was 
rejected. 
 

3) Additional explanatory variables were considered if the average of the upper and lower MSPE of 
a model improved greater than 10 percent.  
 

4) If a MLR model is selected, the VIF must be less than 10 indicating minimal multicollinearity. 
 
Log10 transformation of the response variable has a consequence that must be considered when 

computing concentrations. Computed values must be retransformed back to the original units, a step that 
introduces a bias (typically negative) in computed concentration values (Miller, 1951; Koch and Smillie, 
1986) unless the data are perfectly and positively correlated. The bias arises because regression predicts 
the mean of a normal distribution in log units, and the retransformed value results in a value closer to 
the median value than the mean in linear space. To correct for retransformation bias, the retransformed 
values must be multiplied by a bias correction factor (BCF; equation 1). 

Duan (1983) introduced a nonparametric bias-correction factor called the "smearing" estimator 
(Helsel and Hirsch, 2002, p. 256). The smearing factor is calculated from the mean of the residual 
values (equation 1; Duan, 1983) 

𝐵𝐶𝐹 =  ∑
10log10(𝑦𝑖)−log10(ŷ𝑖)

𝑛

𝑛
𝑖=1   (1) 

where 
 

BCF  is the bias correction factor, 
 

yi is the ith measured suspended-sediment concentration, 
 

ŷi  is the ith regression-computed suspended-sediment concentration, and 
 

n is the number of measured suspended-sediment concentrations in the model-calibration 
dataset. 
 

All regression models have uncertainty inherently associated with each computation. 
Uncertainty can be defined in a number of different ways, including relative percent difference, absolute 
error, and prediction intervals. Prediction intervals, used on the National Real Time Water Quality 
(NRTWQ; http://nrtwq.usgs.gov) Web page, define a range of values for the response variable for a 
given level of certainty. The level of certainty presented with the modeled data is the 90-percent 
prediction interval. The larger the range, the more uncertainty associated with the regression computed 
value. 

Calculating prediction intervals for regression models with two or more explanatory variables 
involves matrices (equation 2; Draper and Smith, 1998). 

http://nrtwq.usgs.gov/
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ŷ ± [𝑡𝛼 2 ,𝑛−𝑝⁄  √𝑠2(1 + 𝑥′(𝑋′𝑋)−1𝑥)] (2) 
where 

 
t is the value of Student's t-distribution having n-p degrees of freedom with an exceedance 

probability of α/2, 
 

α is the level of certainty for the prediction interval (1-0.9, or 0.1 for 90-percent prediction 
interval),  
 

p is the number of explanatory variables plus one, 
 

s is the variance of the residuals calculated during model development,  
 

(X’X)-1 is the X prime X inverse matrix calculated during model development—an expression of 
the covariance among all explanatory variables,  
 

x’ is the mean of the independent variable measurements, and  
 

x is the independent variable measurement. 
 

The models presented in this report are applied to continuous data and computations starting on 
January 1, 2007. Data will continue to be collected and evaluated annually. At least six samples per year 
will be collected over the range of hydrologic and sensor conditions. A fundamental characteristic of 
hydrology is variability, with periods of floods and periods of droughts. Additionally, watershed 
conditions can change seasonally or from other factors such as through changes in land use, 
implementation of best management practices, or by wildfire. Therefore, regression models at a site 
should never be considered static, but rather considered to represent a set period in a continually 
dynamic system in which additional data will help verify any change in constituent concentration and 
source. Models that are updated will be used to compute concentrations after a thorough independent 
technical review and approval process (described in detail in Rasmussen and others, 2009) and updated 
annually, usually applying the new model at the beginning of a calendar year. All models and 
computations that are displayed also are archived on http://nrtwq.usgs.gov. Previously computed and 
archived values will not be changed as new models are developed.  
 

Results of Regression Analysis for Selected Constituents 

The relation between in-stream continuous measurements and constituents of concern for 
artificial recharge was determined at the near Halstead and near Sedgwick streamgaging stations. For 
every constituent, several regression models with various explanatory variables were developed and 
evaluated using RMSE, adjusted R2, Mallow’s Cp, PRESS, VIF, and MSPE (see the “Models 
Considered” sections of appendixes 1 and 2). A single model was selected for each constituent. 
Additionally, plots of residuals were compared to computed values and normal probability plots are 
provided for each selected model in appendix 1 and appendix 2.  

In general, models shown in appendixes 1 and 2 were updated from the previous models 
(Christensen and others, 2000; Christensen and others, 2003) to include results from newly collected 

http://nrtwq.usgs.gov/


 

 8 

samples. The primary reason for updating models is a better descriptive sampling range as a result of 
additional data. This manifests as a change in the model coefficients and in some cases, model form. A 
change in model form (hardness, calcium, sodium, bicarbonate) typically was a move to log10 
transformation or an additional explanatory variable that improved the relation between constituents and 
their continuous surrogates. No significance tests between the new and old models were done. 

Other model modifications are a result of changing sensors used to measure explanatory 
variables. The most common model modification occurred when turbidity measured with the YSI 6026 
sensor that was used in the previous models as an explanatory variable was changed to turbidity from 
the YSI 6136 sensor beginning in 2004; therefore, all updated and total organic carbon models with 
turbidity used only readings from the 6136 sensor for calibration. The following is a discussion of each 
constituent and the associated regression models for the near Halstead and near Sedgwick streamgaging 
stations. Models evaluated and selected are shown in appendixes 1 and 2. 

For models with censored data, regression coefficients were compared with the tobit regression 
coefficients. None of the coefficients differences were greater than 10 percent, suggesting that the 
regression models developed using the assigned values of one-half of the censoring level were valid. All 
computations were completed using R, 3.0.1 for Windows (R Core Team, 2013). 

Hardness 

Because hardness is closely related to dissolved calcium and magnesium, which are both 
charged cations, specific conductance is a statistically significant surrogate for hardness. Hardness 
models were evaluated for the near Halstead and near Sedgwick streamgaging stations (appendixes 1 
and 2). Untransformed models generally resulted in a lower MSPE than log-transformed models, but 
also produce heteroscedastic residual plots; therefore, only log-transformed models, which produced 
homoscedastic residual plots, were considered further. The upper and lower MSPEs of the log-
transformed SLR are below 20 percent, so the SLR model is preferred. Both models use SC as an 
explanatory variable; the positive value of the log(SC) coefficient indicates that specific conductance 
increases as hardness increases, which is intuitive.  

Dissolved Solids 

Dissolved solids in surface water are highly correlated with specific conductance (Hem, 1992). 
Dissolved solids models at near Halstead and near Sedgwick streamgaging stations have an 
untransformed response variable and specific conductance as an explanatory variable. The residual plots 
for the untransformed models show a homoscedastic pattern (appendixes 1 and 2), so no transformation 
of the response variable is necessary. The MSPE is below 20 percent, so no additional explanatory 
variables are necessary. The positive value of the SC coefficient indicates that specific conductance 
increases as dissolved solids concentrations increase, which is intuitive. 

Total Suspended Solids 

Turbidity is an indicator of sediment and other solid material transported in a stream and, thus, a 
physical property related to total suspended solids. Near Halstead and near Sedgwick streamgaging 
station total suspended solids models were considered with log-transformed YSI model 6136 turbidity 
as an explanatory variable. Residual plots for the log-transformed models are homoscedastic 
(appendixes 1 and 2). The preferred model for both streamgages has a log-transformed TSS and an 
explanatory variable of log-transformed YSI model 6136 turbidity. 
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Calcium 

 Calcium is a charged ionic species, and therefore, should be related to specific conductance. All 
calcium models considered, near Halstead and near Sedgwick streamgaging stations, included specific 
conductance as an explanatory variable. Untransformed models were considered, as previous calcium 
models for these sites were untransformed. The results produced heteroscedastic residual plots, 
indicating that a log-transform of the response variable was preferred. The positive value of the log(SC) 
coefficient indicates that specific conductance increases as dissolved calcium concentrations increase, 
which is intuitive. 

Sodium 

Sodium is also a charged ionic species and, therefore, related to specific conductance. All 
regression models considered for computing continuous sodium concentrations near Halstead and near 
Sedgwick streamgaging stations contain a form with specific conductance as an explanatory variable. 
Previous sodium models used untransformed sodium and SC. Untransformed models with this dataset 
generally resulted in heteroscedastic residual plots (appendixes 1 and 2); therefore, only log-transformed 
models were considered further. Specific conductance produced the best model, as additional 
explanatory variables did not improve the regression statistics. The positive value of the log(SC) 
coefficient indicates that specific conductance increases as dissolved sodium concentrations increase, 
which is intuitive. 

Alkalinity 

Hem (1992) suggests that a relation between alkalinity and specific conductance can be 
established. Models considered for the computation of continuous alkalinity include a form with specific 
conductance as an explanatory variable. Untransformed models resulted in heteroscedastic residual plots 
(appendixes 1 and 2), indicating that a log-transform of the response variable is preferred. The average 
of the upper and lower MSPE for the SLR model with the log-transform of specific conductance is more 
than 20 percent, so an additional explanatory variable (log-transform of streamflow) was considered for 
the model. The p-value of log(Q) is less than 0.05, so the variable was retained. The preferred alkalinity 
model, therefore, contains a log-transformed response variable and explanatory variables of log-
transformed specific conductance and log-transformed streamflow. Log transformation is consistent 
with the previous models used at near Halstead and near Sedgwick streamgaging stations. The positive 
value of the log(SC) coefficient makes intuitive sense, and the negative value of the log(Q) may indicate 
that higher flows tend to dilute constituents that affect alkalinity. 

Bicarbonate 

Like alkalinity, models considered for the computation of continuous bicarbonate include a form 
with specific conductance as an explanatory variable. Untransformed models resulted in heteroscedastic 
residual plots (appendixes 1 and 2), indicating that a log-transform of the response variable is preferred. 
The average of the upper and lower MSPE for the SLR model with the log-transform of specific 
conductance is more than 20 percent, so an additional explanatory variable (log-transform of 
streamflow) was considered for the model. The p-value of log(Q) is less than 0.05, so the variable was 
retained in the model. The preferred bicarbonate model, therefore, contains a log-transformed response 
variable and explanatory variables of log-transformed specific conductance and log-transformed 
streamflow. This is a departure from the previous models at these two sites. At the near Halstead 
streamgaging station, log-transformed bicarbonate previously was expressed as a function of linear SC 
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and log-transformed streamflow. At the near Sedgwick streamgaging station, log-transformed 
bicarbonate was expressed as a function of log-transformed SC alone. The positive value of the log(SC) 
coefficient makes intuitive sense, and the negative value of the log(Q) may indicate that higher flows 
tend to dilute bicarbonate concentrations.  

Chloride 

With increasing chloride concentration, the specific conductance value of water will also 
increase. However, larger specific conductance and chloride concentrations generally correspond with 
low-flow conditions, indicating that streamflow may be a significant explanatory variable. Chloride 
concentrations are likely smaller at the downstream Sedgwick streamgaging station because of dilution 
from groundwater inflow containing smaller chloride concentrations (Ziegler and others, 2010). 
Chloride models considered for near Halstead and near Sedgwick streamgaging stations included a form 
with specific conductance as an explanatory variable. The untransformed models generally have higher 
MSPE values and heteroscedastic residual plots (appendixes 1 and 2), so log transformation of the 
response variable is necessary. The average of the upper and lower MSPE for the SLR model with the 
log-transform of specific conductance is above 20 percent, so an additional explanatory variable (log-
transform of streamflow) was considered for the model. The p-value of log(Q) is less than 0.05, so the 
variable was retained in the Sedgwick model. Adding log(Q) as an explanatory variable for the near 
Halstead model did not reduce MSPE, so it was not retained in that model. The preferred chloride model 
contains a log-transformed response variable and, as explanatory variables, log-transformed specific 
conductance and, at the Sedgwick streamgaging station, log-transformed streamflow. This is a departure 
from the previous models at these two sites. Previously, the response variable, untransformed chloride 
was expressed with the explanatory variable, untransformed SC at the near Halstead streamgaging 
station and log-transformed chloride was expressed with log-transformed streamflow and untransformed 
SC at the Sedgwick streamgaging station. The positive value of the log(SC) coefficient makes intuitive 
sense. 

Sulfate 

Sulfate is a charged ionic species and directly related to specific conductance; an increase in 
sulfate concentration results in a corresponding increase in specific conductance in surface water. 
Sulfate models were considered for the Sedgwick and near Halstead streamgaging stations. Based on 
plots of residuals, log-transformed sulfate was chosen instead of untransformed sulfate as the response 
variable, because it produced a homoscedastic pattern. Because average MSPE for log-transformed 
sulfate models at both sites was more than 20 percent, log-transformed streamflow was considered as an 
additional explanatory variable. In the Sedgwick model, log-transformed streamflow was retained as an 
explanatory variable, but in the near Halstead model, the addition of log(Q) did not reduce MSPE and it 
was not retained. The positive value of the log(SC) coefficient makes intuitive sense. 

Total Organic Nitrogen 

Total organic nitrogen is likely associated with suspended sediment and runoff containing 
nitrogenous organic matter (Juracek and Rasmussen, 2008). Organic material is one of the major 
components of total suspended solids; thus, turbidity is a suitable surrogate for total organic nitrogen. 
All total organic nitrogen models considered include a form with YSI model 6136 turbidity as an 
explanatory variable. The untransformed models generally have higher MSPE values and 
heteroscedastic residual plots (appendixes 1 and 2), so log transformation of the response variable is 
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necessary. The largest concentrations of total organic nitrogen are in the spring and summer, 
presumably when it is applied to crops and when rainfall is most abundant (Kansas Center for 
Agriculture Resources and the Environment and others, 2011). Total organic nitrogen concentrations, 
therefore, are highly seasonal. To account for seasonality in the regression models, day of the year (a 
number between 1 and 365) is included as a variable using the multiple regression with periodic 
functions method described by Helsel and Hirsch (1992). For the near Halstead and near Sedgwick 
streamgaging stations, turbidity and day of the year are the explanatory variables used to compute total 
organic nitrogen concentrations. Time of year shows a strong physical correlation with total organic 
nitrogen concentrations. The older total organic nitrogen models did not include day of the year as an 
explanatory variable, likely because there were not enough samples to define it as a significant variable. 
The positive value of the log(Turb6136) coefficient makes intuitive sense. 

Total Phosphorus 

Because phosphorus is likely to sorb to suspended sediment, turbidity is a good surrogate for the 
computation of continuous total phosphorus concentrations. All total phosphorus models considered 
include a form with YSI model 6136 turbidity as an explanatory variable. The untransformed models 
generally have somewhat heteroscedastic residual plots (appendixes 1 and 2), so log transformation of 
the response variable is necessary. The MSPE of the SLR model is less than 20 percent, so no additional 
explanatory variables are necessary. This is the first model to use log-transformed variables to compute 
total phosphorus at these two sites. The positive value of the log(TURB6136) coefficient makes 
intuitive sense. 

Escherichia Coli Indicator Bacteria 

Turbidity can be an important surrogate for the computation of E. coli density, because bacteria 
may sorb to suspended particles. Based on the comparison of Mallow’s Cp and PRESS values for all 
models output (appendix 1), the preferred model contains a log-transformed response variable and, as an 
explanatory variable, log-transformed turbidity. The residual plot shows a homoscedastic pattern. The 
positive value of the log(TURB6136) coefficient makes intuitive sense. 

Fecal Coliform Indicator Bacteria 

Because E.coli is a specific species of fecal coliform, it is plausible that the regressor for 
computing continuous fecal coliform densities is similar to the model for computing continuous E. coli 
densities. Residual plots for the log-transformed models are homoscedastic (appendixes 1 and 2). The 
calculated MSPE is much greater than 20 percent, so an additional explanatory variable (log-
transformed specific conductance) was considered for the model. The p-value of the log(SC) term in the 
MLR model is greater than 0.05, so the term was rejected. The preferred model, therefore, contains a 
log-transformed response variable and, as an explanatory variable, log-transformed turbidity. The 
positive value of the log(TURB6136) coefficient makes intuitive sense. 

Arsenic 

Larger dissolved arsenic concentrations in stream water generally occurred at both sites during 
low streamflow when base flow to the stream was supplied from groundwater, indicating that the 
arsenic source is the groundwater inflow. In other words, the arsenic concentration is expected to 
decrease as streamflow increases. Various arsenic models were considered, all indicating that log-
transformed streamflow is the strongest explanatory variable. The untransformed models have 
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heteroscedastic residual plots (appendixes 1 and 2), so log transformation of the response variable is 
required for the model. The calculated MSPE for the SLR model is much greater than 20 percent, so an 
additional explanatory variable (water temperature) was considered for the model. The p-value of the 
water temperature term was less than 0.05, so the term was retained. The preferred model, therefore, has 
a log-transformed response variable and explanatory variables of log-transformed streamflow and water 
temperature. Water temperature may just be a surrogate for the seasonal fluctuation in arsenic 
concentrations. This is a departure from the previous arsenic models when water temperature was not an 
explanatory variable.  

Atrazine 

In a study by Ziegler and others (1999), atrazine was determined to have an inverse relation with 
chloride, and therefore an inverse relation with specific conductance as well. Like total organic nitrogen, 
Christensen and Ziegler (1998) observed the largest concentrations of atrazine in the spring and 
summer, presumably when atrazine is applied to crops and when rainfall is most abundant. Atrazine 
concentrations, therefore, are also highly seasonal. To account for this in the regression models, day of 
the year is included as a variable using the multiple regression with periodic functions method described 
by Helsel and Hirsch (2002). For the near Halstead and near Sedgwick streamgaging stations, specific 
conductance and day of the year are the explanatory variables used to compute atrazine concentrations. 
Time of year shows a strong physical correlation with atrazine concentrations. The largest observed 
concentrations are in the spring and summer, when it is applied to crops and rainfall is more abundant. 
The differences from the older atrazine models likely are caused by changes in application practices of 
atrazine that may have caused a change in the timing and distribution within the watersheds, and 
relations of these variables (Kansas Center for Agriculture Resources and the Environment and others, 
2011). Unfortunately, because of the large uncertainties (MSPEs greater than 200) in these models, 
changes in application practices cannot be easily quantified.  

Total Organic Carbon 

Organic matter is one of the major components of total suspended solids (Juracek and 
Rasmussen, 2008; Hem, 1992); turbidity may be a suitable surrogate for total organic carbon. All total 
organic carbon models considered include YSI model 6136 turbidity as an explanatory variable. The 
positive value of the log(TURB6136) coefficient makes intuitive sense. The untransformed models 
generally have higher MSPE values and heteroscedastic residual plots (appendixes 1 and 2), so log 
transformation of the response variable is necessary. Both models for computing total organic carbon 
concentrations use turbidity only.  

Suspended-Sediment Concentration 

Like total suspended solids, turbidity is likely a suitable surrogate for the computation of 
continuous suspended-sediment concentration. Suspended-sediment models considered include YSI 
model 6136 turbidity as an explanatory variable. The two untransformed models have heteroscedastic 
residual plots (appendixes 1 and 2), so log transformation of the response variable is necessary. The 
average of the upper and lower MSPE for the SLR model with the log-transform of specific 
conductance is more than 20 percent, so an additional explanatory variable (log-transformed 
streamflow) was considered for the model. The p-value of  log(Q) is greater than 0.05, so the variable 
was retained in the model. The preferred suspended-sediment model contains a log-transformed 
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response variable and, as explanatory variable, log-transformed turbidity and streamflow. The positive 
value of the log(TURB6136) coefficient makes intuitive sense. 

Summary  

Water from the Little Arkansas River is used as source water for artificial recharge of the Equus 
Beds aquifer. The U.S. Geological Survey has operated two continuous real-time water-quality 
monitoring stations since 1995 on the Little Arkansas River in Kansas. Continuously measured water-
quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved 
oxygen, and turbidity. Discrete water-quality samples were collected during 1995 through 2014 and 
analyzed for sediment, nutrients, bacteria, atrazine, and other water-quality constituents. Regression 
models were developed to establish relations between discretely sampled constituent concentrations and 
continuously measured physical properties to compute concentrations of selected constituents of 
interest.  

Regression models at USGS streamgaging stations on the Little Arkansas River at Highway 50 
near Halstead (07143672) and the Little Arkansas River near Sedgwick (07144100) were originally 
published in 2000 and were updated in 2003. This report updates those models using discrete and 
continuous data collected during May 1998 through August 2014. This report presents the regression 
models. The real-time computations of water-quality concentrations and loads are available at 
http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita 
because water-quality information allows for real-time quantification and characterization of chemicals 
of concern (including chloride), in addition to nutrients, sediment, bacteria, and atrazine transported in 
the Little Arkansas River. The water-quality information aids in the decision making for water treatment 
before artificial recharge. 
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Appendixes 

Appendixes 1–2 contain the model archive summaries for the linear regression models. The 
previous models indicated in the summaries are documented in Christensen and others (2000) and 
Christensen and others (2003). See the National Real Time Water Quality (NRTWQ; 
http://nrtwq.usgs.gov) Web page for an explanation of graphs in the model archive summaries. 
Explanations are provided with each figure in the appendixes. For the “Normal Quantile” plot, the green 
line is a “theoretical” normal distribution of probabilities for the given residuals.  

Appendix 1. Model Outputs for Little Arkansas River at Highway 50 near Halstead, KS (site 
07143672). 

Appendix 2. Model Outputs for Little Arkansas River near Sedgwick, KS (site 07144100). 
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