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By Jeffrey J. Love,1 E. Joshua Rigler,1 Anna Kelbert,1 Carol A. Finn,1 Paul A. Bedrosian,1  
and Christopher C. Balch2

Abstract
A review is given of the present feasibility for accurately mapping geoelectric fields across North America in near-realtime 

by modeling geomagnetic monitoring and magnetotelluric survey data. Should this capability be successfully developed, it could 
inform utility companies of magnetic-storm interference on electric-power-grid systems. That real-time mapping of geoelectric 
fields is a challenge is reflective of (1) the spatiotemporal complexity of geomagnetic variation, especially during magnetic storms, 
(2) the sparse distribution of ground-based geomagnetic monitoring stations that report data in realtime, (3) the spatial complexity 
of three-dimensional solid-Earth impedance, and (4) the geographically incomplete state of continental-scale magnetotelluric surveys.

Introduction
On March 13, 1989, an intense magnetic storm (for example, Allen and others, 1989) induced Earth-surface geoelectric 

fields of sufficient strength to interfere with the operation of Québec’s high-voltage electric-power-grid system, causing a black-
out across the entire Canadian province (for example, Bolduc, 2002). The same storm caused numerous operational problems 
and anomalies for power-grid systems in the United States, and geomagnetically induced currents damaged a high-voltage 
transformer at a nuclear-power plant (North American Electric Reliability Corporation, 1990; Barnes and others, 1991). More 
recently, the magnetic storm of November 6, 2001, caused the failure of electric-power transmission systems in New Zealand 
(Béland and Small, 2005), and the Halloween magnetic storm of October 29–31, 2003, caused operational failures in Swedish 
systems (Pulkkinen and others, 2005). Some scenario analyses anticipate that the future occurrence of a rare magnetic super-
storm could cause widespread and long-lasting loss of electric power (for example, Kappenman, 2012) and entail significant 
cost for national economies (for example, Barnes and Van Dyke, 1990; National Research Council, 2008; Eastwood and others, 
2017). In light of these events and possibilities, the U.S. Federal Energy Regulatory Commission (2013; Order No. 779) directed 
the North American Electric Reliability Corporation to assess the vulnerability of United States domestic power-grid systems to 
geomagnetic disturbance.

Time-dependent maps of ground-level geoelectric fields (for example, Thomson and others, 2009; Love and others, 2014) 
would enable estimation of geomagnetically induced currents in power-grid networks and thereby support vulnerability assess-
ments of power-grid systems (for example, Molinski, 2002; Samuelsson, 2013; Piccinelli and Krausmann, 2014). Geoelectric 
maps could also inform operational decision making and management of power-grid systems during geomagnetic storms. There 
are, however, significant challenges in producing such maps, especially in realtime. Mapping the geoelectric field requires 
estimates of both the Earth's surface geomagnetic field variation and the Earth’s surface electromagnetic impedance. In particular, 
the accuracy of such modeling is limited by the sparseness of real-time geomagnetic monitoring stations and the incompleteness 
of magnetotelluric surveys.

The U.S. National Space Weather Action Plan (SWAP) contains directives for Federal government agencies involved with 
a disparate set of subjects related to space-weather operations, response, and mitigation. One of these directives calls for the 
Department of the Interior to “report on the feasibility” for providing the Department of Commerce with a “real-time service for 
geoelectric field maps” (National Science and Technology Council, 2015, Action 5.5.6). This directive, in turn, applies to the 
U.S. Geological Survey (USGS) and its Geomagnetism Program (Love and Finn, 2011). 

1U.S. Geological Survey

2National Oceanic and Atmospheric Administration
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This report was developed to satisfy the SWAP directive. It is also consistent with what the U.S. National Research Council 
(2013, p. 146) has described as a “critical national need” to develop capabilities for estimating geomagnetically induced currents 
in power-grid systems; it is consistent with a collaborative study sponsored by Living With a Star Program of the National  
Aeronautics and Space Administration (NASA) (Pulkkinen and others, 2017); and, in general terms, it is consistent with the 
goals identified in the USGS Natural Hazards Mission for enhancing observations, fundamental understanding of hazards and 
their effects, improving assessment products and services, and providing effective situational awareness (Holmes and others, 2013).

Length and Time Scales
In designing a project for mapping geoelectric fields, it is useful to first consider the relevant characteristic length and 

time scales of power-grid systems themselves. The geomagnetically induced voltage on a power grid can be obtained by 
point-to-point line integration of the geoelectric field along the length of the grid line between grounding points. The distance  
between these substations is typically 100 kilometers (km) or so (for example, Horton and others, 2012, table II), and a 
network can consist of multiple connections stretching across 1,000 km or more. With respect to time scales, we note that the 
1989 Hydro-Québec collapse occurred over the course of about 1 minute with tripping of multiple compensators that resulted 
in system instability (Bolduc, 2002). Electric-utility companies have considered the vulnerability of high-voltage transformers  
to abnormal heating caused by quasi-direct, geomagnetically induced currents with durations from about 100 seconds to 
about 10,000 seconds (about 10˗2 to 10 ˗4 hertz [Hz]) (for example, North American Electric Reliability Corporation, 2014a; 
Pulkkinen and others, 2017). 

Motivation for Parameterized Induction
It is tempting to consider continental-scale mapping of geoelectric fields through straightforward interpolation of data 

acquired from geoelectric observatories. In fact, long-term geoelectric field monitoring is maintained at only a few locations 
around the world (for example, Fujii and others, 2015), and data from these stations are useful for validating geoelectric estimation  
methods. However, because of the complexity of solid-Earth conductivity structure, a geoelectric field induced at one location 
can differ significantly from that induced less than a hundred kilometers away (for example, McKay and Whaler, 2006;  
Bedrosian and Love, 2015). This means that accurate mapping of geoelectric fields by interpolation of direct measurements 
would require a very dense network of geoelectric observatories. Unfortunately, it is relatively difficult to operate geoelectric  
monitoring systems for long durations of time (for example, Ferguson, 2012). A more practical approach for mapping of  
geoelectric fields would utilize an empirical parameterization of induction (for example, Bonner and Schultz, 2017; Kelbert and 
others, 2017; Weigel, 2017)—this amounts to muliplication in the frequency domain or convolution in the time domain of 
a real-time map of horizontal-component geomagnetic variation, derived from ground-level magnetometer data, with a map 
of the Earth’s surface impedance, derived from magnetotelluric survey data. In what follows, we summarize some of the technical 
issues, challenges, and opportunities of this approach for operational mapping of geoelectric fields in realtime.

Geomagnetic Monitoring
Magnetometer stations are operated by a variety of institutes for a variety of purposes (for example, Love, 2008). Some of 

these stations are full-fledged observatories and are, as such, dedicated to the long-term acquisition of accurate magnetometer 
time series (for example, Rasson and others, 2011); other stations are simpler variometers, for which acquired time series are not 
necessarily calibrated for absolute accuracy. Many observatory institutes “adjust” their real-time data so that they have a rough 
calibration. Often, this is a rotation that compensates for magnetometer orientation defined by the local magnetic meridian (the 
deviation from geographic north is declination); many variometer institutes do not report magnetometer orientation. Some  
magnetometers are operated with high levels of temporal continuity, whereas others are operated more intermittently. Data  
from only a subset of the world’s magnetometer stations are available in what might be considered “near-realtime.” Improving  
ground-level geomagnetic monitoring is an important goal of the SWAP (National Science and Technology Council, 2015, 
Action 6.2.1), one that would bring significant benefit to the space-weather community but which also comes with significant 
challenges (for example, Love and Finn, 2017).

With respect to North America, inspection of the INTERMAGNET (www.intermagnet.org; for example, Love and  
Chulliat, 2013) and SuperMAG (http://supermag.jhuapl.edu; Gjerloev, 2009) databases for 1-second holdings identified data 
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for January 2015 from about 45 stations in Canada, including observatories operated by Natural Resources Canada (NRCan) 
(Lam, 2011) and variometers that are parts of the AUTUMN (Connors and others, 2009), AUTUMNX (Connors and others, 
2016), CARISMA (Mann and others, 2008), and MACCS (Engebretson and others, 1995) projects; 15 stations in the continental 
United States, including observatories operated by the USGS (Love and Finn, 2011) and variometers that are part of the McMac 
project (Chi and others, 2013); and 10 stations in Alaska, including observatories operated by the USGS and variometers that 
are part of the GIMA project (Wilkinson and Heavner, 2006). The geographic distribution of these stations is far from uniform, 
and the distance between many of them exceeds 1,000 km. Data from all the observatories operated by the USGS are available 
within about 15 minutes of acquisition, either directly from the USGS or through INTERMAGNET; NRCan data are available 
to selected users, including the USGS, National Oceanic and Atmospheric Administration, Space Weather Prediction Center, and 
the U.S. Air Force in near-realtime, though only after a 1-day delay through INTERMAGNET; data from the variometer stations 
are available on a range of schedules, from a few minutes up to a day or so after acquisition. 

Geomagnetic Variation
Geomagnetic field variation is a superposition of numerous signals generated by source electric currents that are both above 

the Earth’s surface and within the Earth’s interior. So, for example, although magnetic storms have their source currents in the 
Earth’s ionosphere and magnetosphere, they induce telluric currents in the Earth’s interior, and these, in turn, generate magnetic 
fields that contribute to the totality of the field measured at the surface. During periods of solar-terrestrial quiescence, quasi-periodic 
geomagnetic variation is sustained by tides in the ocean and ionosphere (for example, Matsushita, 1967). Geomagnetic variation, 
such as that realized at a particular geographic site, encompasses a wide range of frequencies (periods) (for example, Olsen, 2007). 

Ground magnetometers are used to define the time evolutionary phases of magnetic storms (for example, Nishida, 1978; 
Loewe and Prölss, 1997). Many of these commence suddenly, with the arrival at Earth of interplanetary shocks driven by 
coronal-mass ejections (for example, Tsurutani and Gonzalez, 1997). Storm commencements and related intrastorm impulses 
(for example, Joselyn and Tsurutani, 1990) are seen globally in ground-magnetometer time series as abrupt changes in geomag-
netic field across a broad range of latitudes with time scales ranging from seconds (Araki and others, 1997) to a few minutes (for 
example, Araki and others, 2004). After storm commencement, geomagnetic disturbance is roughly organized by geomagnetic 
latitude (for example, Ngwira and others, 2013; Woodroffe and others, 2016). Storm main-phase is characterized by the reduc-
tion in low-latitude intensity that is generated by an intensification of the magnetospheric ring current (for example, Gonzalez 
and others, 1994; Cowley, 2007). During a magnetic substorm, abrupt rearrangements of the plasma and fields in the Earth’s 
magnetotail divert electric currents into and out of the high-latitude ionosphere (for example, McPherron, 1991; Kamide and 
others, 1998). These substorm currents can generate both auroral light and localized ground-level geomagnetic disturbance. 
During an intense magnetic storm, the auroral oval and associated geomagnetic disturbance can drift down to lower latitudes 
(Nagata, 1950), such as those of the continental United States.

Small-scale ionospheric currents at a height of about 100 km will, by geometric attenuation, generate ground-level geomag-
netic disturbance having horizontal length scales exceeding 100 km. This expectation is supported by analyses of data acquired 
from closely spaced, high-latitude magnetometers: geomagnetic disturbance with periods longer than 10 seconds has a horizon-
tal-length scale greater than about 200 km (for example, Watermann and others, 2006; Ngwira and others, 2015). Ground-level 
substorm disturbance typically lasts for an hour or two (for example, Akasofu, 1964), interspersed by quieter periods of a few 
hours (for example, Borovsky and others, 1993), but occasionally, long bouts of substorm disturbance can persist for days or a 
week or more (for example, Tsurutani and others, 2004).

Although these general observations can guide our project for mapping geomagnetic variation, we also recognize that the 
spatiotemporal details of geomagnetic disturbance (for example, Valdivia and others, 1999; Pulkkinen and others, 2006) are 
unique for each storm. Some storms exhibit complicated geomagnetic disturbance, whereas for others it can be relatively simple. 
Sometimes, over the course of a storm, disturbance can evolve from simple to complex and back to simple. Indeed, it is some-
times said that “if you have seen one storm, you have seen one storm” (Friedel and others, 2002, p. 266). Furthermore, physics-
based models of the coupled solar-wind-magnetospheric-ionospheric system cannot yet accurately predict the idiosyncratic, 
storm-time, spatiotemporal details of ground-level geomagnetic disturbance, especially at mid- and auroral-zone latitudes (for 
example, Pulkkinen and others, 2013; Rastätter and others, 2013; Tóth and others, 2014).

A straightforward, empirical demonstration of some of the challenges faced in mapping the storm-time geomagnetic field 
is given in figure 1, where we plot north-south (Bx) disturbance during the Halloween storm of October 2003 as recorded with 
1-minute sampling by magnetometers at two observatories, Ottawa (OTT, Ontario, Canada) and Fredericksburg (FRD, Virginia, 
United States), that are on nearly the same magnetic longitude but different magnetic latitudes. From this figure, we see that the 
time series are similar for about 2 hours during the initial phase of the storm, but afterward, large-amplitude variation with time 
scales shorter than a couple of hours are not well correlated for the remaining duration of the storm.
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Mapping Geomagnetic Variation
Careful consideration needs to be given for the methods used to construct maps of geomagnetic variation with the data that are 

presently available from ground-based magnetometer stations. Simple, nearest-neighbor and two-dimensional interpolation methods do 
not use well-defined correlation lengths, and the resolution of the model’s field is not better than the spacing of stations (too sparse). 
Statistical interpolation, such as kriging (for example, Armstrong, 1998), is somewhat better, but it requires prior understanding of 
correlation lengths. Better are methods based on physically realistic assumptions. Specifically, one can assume that the field below 
the ionosphere and above the Earth’s surface is free of currents and solve for the magnetic field potential in the region. With this, 
it is conventional to construct maps of geomagnetic variation using regularized least-squares fitting (for example, Menke, 2012) of 
mathematical basis functions to magnetometer data. Three types of basis functions are in common use: for global mapping, spherical  
harmonics (for example, Winch, 1981); for regional mapping, spherical cap (for example, Haines and Torta, 1994); and spherical 
elementary current systems (SECS) (for example, Amm and Viljanen, 1999; Weygand and others, 2011). Development of an opera-
tional capability for near-realtime mapping of geomagnetic variation (for example, Rigler and others, 2014) using SECS algorithms 
(for example, Pulkkinen and others, 2003) is part of an ongoing interagency collaborative project between the USGS, NASA, and the 
National Oceanic and Atmospheric Administration (National Science and Technology Council, 2015, Action 5.5.6).

In assessing the errors in SECS maps of geomagnetic variation over North America, it is helpful to examine two related analyses.  
Using data recording a magnetic storm of modest intensity (maximum ˗Dst = 101 nanoteslas [nT]; where Dst refers to disturbance 
storm time) acquired from a relatively dense magnetometer network operated in Scandinavia, Pulkkinen and others (2003) found 
misfit errors in estimates of local geomagnetic variation of about 10 percent (approximately 100 nT) during disturbance (their fig. 9);  
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Figure 1. Comparison of (A) 1-minute north-south Bx geomagnetic variation time series recorded at the Ottawa (red, OTT, magnetic 
55.37°N, 355.88°E) and Fredericksburg (blue, FRD, magnetic 48.14°N, 353.93°E) observatories during the Halloween storm of October 
29–31, 2003, and (B) the difference between the OTT and FRD time series. These observatories are separated by 814 kilometers. Bx, in 
nanoteslas; Difference, in nanoteslas. FRD data from Love and Bedrosian, 2018, fig. 2.
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misfit errors in their estimates of the time derivative of the field exceed a factor of 2 (their fig. 10). Using data recording relatively 
quiescent conditions (maximum ˗Dst = 55 nT) acquired from a sparse distribution of observatories in Northern Canada and Alaska, 
McLay and Beggan (2010) found misfit errors in estimates of local geomagnetic variation of approximately 50 nT but also occa-
sionally more than 300 nT, or an amount comparable to the amplitude of variation in the field itself (see their fig. 2, and compare 
with our fig. 1). These results are sobering, and they are cause for caution in concluding that geomagnetic variation can be easily 
mapped. They indicate a need for systematic assessment of uncertainties in the results from such methods.

Solid Earth Electrical Conductivity and Diffusion

The electrical conductivity of the Earth has a complicated spatial distribution, this being reflective of the Earth’s geological 
history and tectonic structure. The most complicated conductivity structure is concentrated in the Earth’s crust, which extends to 
a depth of approximately 20–50 km in North America (for example, Bally and Palmer 1989; Chulick and Mooney, 2002); over 
lateral spatial scales of interest to the power-grid industry (several kilometers to thousands of kilometers), crustal conductivity 
spans at least 4–6 orders of magnitude—from highly conducting to effectively insulating (or resistive)—depending on a myriad 
of factors, including mineralogy, partial melt, water and aqueous fluid content, clay content, volatile content, porosity, and so forth 
(for example, Yoshino, 2011; Evans, 2012). Deeper down, the continental lithosphere (extending to depths of approximately 50 to 
approximately 200 km) followed by the asthenosphere (below the lithosphere) extend down to the upper transition zone boundary at 
410 km depth, and these have complicated conductivity structure; indeed, even the Earth’s upper to mid-mantle down to 1,200 km  
or so is known to exhibit significant spatial structure spanning several orders of magnitude (for example, Kelbert and others, 2009). 

Time-dependent geomagnetic field variation, such as that generated in geospace and measured at the Earth’s surface, propa-
gates into the Earth’s interior in a manner that is, essentially, diffusive for the frequency (period) range of interest (for example, 
Stratton, 1941, chap. 5; Weidelt and Chave, 2012). The Earth’s structure affects the characteristic length scale across which these 
electromagnetic signals are attenuated in the Earth’s interior; the diffusive “skin depth” is proportional to the square root of the 
period of geomagnetic variation and inversely proportional to the square root of the conductivity. For example, for bulk conduc-
tivity of 10-3 siemens per meter (S/m), which might correspond to dry continental craton, and for a 240-second (4-minute)  
electromagnetic variation, the diffusive length scale is about 250 km; correspondingly, for bulk conductivity of 10-1 S/m, which 
might correspond to a sedimentary basin, the diffusive length scale is about 25 km. In other words, a 240-second electromagnetic  
variation can plumb the depths of continental crust and even the continental lithosphere. We note that these scales of several tens 
to several hundred kilometers also correspond, very approximately, to the typical lateral distance between neighboring electric-
power-grid substation ground points in North America. Longer periods of interest, out to a few hours, can propagate as deep as a 
thousand kilometers.

Magnetotelluric Surveys 

Magnetotellurics is a passive geophysical exploration method for estimating the electrical conductivity structure of 
the Earth’s crust, lithosphere, and upper mantle (for example, Unsworth, 2007). Magnetotelluric surveys are performed 
for purposes of geothermal and mineral exploration, for the study of earthquake and volcano hazards, and for fundamental 
geophysical research (for example, Ritter, 2007). A survey of a given geographic region is accomplished through temporary  
deployment of electromagnetic sensors (magnetometers and grounded electrodes) with which simultaneous measurement 
is made of natural geomagnetic variation and geoelectric field variation at the Earth’s surface (for example, Simpson and 
Bahr, 2005; Ferguson and others, 2012). 

In the United States, the National Science Foundation’s EarthScope program (Williams, and others, 2010) has, since 2006, 
supported a magnetotelluric survey that has covered about half of the continental United States to date (Schultz, 2010). The 
EarthScope magnetotelluric survey is being accomplished with a transportable set of measurement systems, installed at a quasi-
regular 70-km spacing and operated for about 2–4 weeks at each site. The EarthScope impedance tensors can be obtained from 
the Data Management Center of the Incorporated Research Institutions for Seismology (http://ds.iris.edu/ds/products/emtf; 
Kelbert and others, 2011). The tensors (Schultz and others, 2006–2018) are roughly limited to a frequency band of 10-4 to 10-1 Hz 
(10 to 10,000 seconds). In a separate, smaller project, the USGS performed a magnetotelluric survey of the Florida peninsula in 
2015 consistent with EarthScope magnetotelluric protocols. In Canada, the Natural Sciences and Engineering Research Council 
has supported magnetotelluric surveys of southern Canada through its Lithoprobe program (for example, Hammer and others, 
2011), though these surveys have not been performed on a broad geographic scale like that made through EarthScope.

http://ds.iris.edu/ds/products/emtf
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Impedance and Models of Earth Conductivity

It is conventional to summarize the Earth-surface relation between the geomagnetic field and the induced geoelectric field 
in terms of a complex-valued, frequency-dependent impedance tensor. Physically, impedance is determined by the conductiv-
ity structure of the Earth’s interior (for example, Weidelt and Chave, 2012). An empirical impedance tensor can be constructed 
(for example, Egbert, 2007a; Chave, 2012) by Fourier transforming the magnetotelluric time series using a regularized least-
squares fitting method (for example, Menke, 2012). Empirical impedance tensors can, in turn, be inverted for models of Earth 
conductivity structure (for example, Egbert, 2007b; Rodi and Mackie, 2012) using regularized nonlinear inverse methods along 
with standard numerical packages (for example, Kelbert and others, 2014). Earth conductivity models obtained by magnetotel-
luric inversion methods are usually parameterized in terms of either finite-difference or finite-elements computational grids (for 
example, Kelbert and others, 2014), and these usually show that Earth conductivity is three-dimensional (3D) in structure (for 
example, Hermance, 2011).

Conductivity models obtained using the EarthScope magnetotelluric tensors inform fundamental understanding of North 
American geology and tectonic history (for example, Bedrosian and Feucht, 2014; Meqbel and others, 2014; Yang and others, 
2015; Bedrosian 2016; Murphy and Egbert, 2017). They also provide us with important insight on the feasibility of mapping 
geoelectric fields. In particular, synthetic analyses of the EarthScope magnetotelluric impedance tensors show that some geo-
graphic regions would realize significant site-to-site differences in induced geoelectric fields during magnetic storms, sometimes 
as large as 2 orders of magnitude over distances of about 100 km, whereas other regions would realize relatively uniform geo-
electric fields over broad areas (Bedrosian and Love, 2015). Beyond certain rules of thumb, and without a significant computa-
tional cost, error estimates on model impedance can be obtained by comparing the modeled magnetotelluric impedances with 
local empirical impedances coming from auxiliary finer scale survey installations.

In figure 2, we show a map of synthetic geoelectric amplitudes (scalar impedances) that would be induced by spatially 
uniform north-south geomagnetic variation having unit amplitude (1 nanotesla [nT]) and varying in time as a sinusoid with 
a period of 240 seconds. Geographic differences in the induced geoelectric fields are due solely to geological and deeper 
tectonic structure. Generally speaking, synthetic amplitudes are large above the resistive igneous craton, such as in northern 
Minnesota (MN), and small above conductive sedimentary rocks, such as in Florida (FL). Significant differences in amplitude 
between neighboring northern Minnesota sites are consistent with a complex 3D subsurface conductivity structure (for example, 
Yang and others, 2015; Bedrosian, 2016), including a failed continental rift that convulsed the continent 1.1 billion years ago 
(for example, Stein and others, 2016). The spatial resolution of maps such as this are, of course, limited by the station spacing 
of the EarthScope magnetotelluric survey; resolving smaller scale conductivity features is possible, but it would require a denser 
magnetotelluric survey.

Calculation of Geoelectric Fields from Earth Impedance

The geoelectric field at the Earth’s surface can be obtained by convolving a map of horizontal-component geomagnetic 
variation with a map of the Earth’s surface impedance. This convolution can be performed, for a given location, in the frequency 
domain, by applying an inverse discrete Fourier transform to the geomagnetic variation time series (for example, Bonner and 
Schultz, 2017; Weigel, 2017), or in the time domain, after converting the local impedance to a discrete impulse response func-
tion (for example, Marti and others, 2014; Kelbert and others, 2017). Analyses using these methods show that peak geoelectric 
field variation can be estimated with an error of within 15 percent (Kelbert and others, 2017). 

Realistic 3D Versus Simplistic 1D Models of Earth Conductivity

In contrast to analyses based on magnetotelluric surveys, some studies of storm-time geoelectric fields (for example, 
Boteler, 1997; Pulkkinen and others, 2008; Gannon and others 2012; Wei and others, 2013; Marti and others, 2014; North  
American Electric Reliability Corporation, 2014b; Viljanen and others, 2014; Boteler and Pirjola, 2017; Torta and others, 2017; 
Winter and others, 2017) have been based on impedances calculated from simplistic one-dimensional (1D) or 1D piecewise 
assemblies of regional depth-dependent conductivity profiles estimated indirectly and qualitatively from geological and geophysical 
information (for example, Ferguson and Odwar, 1997; Ádám and others, 2012; Fernberg, 2012; Blum and others, 2015). We also 
note that the geoelectric field time series that Natural Resources Canada makes available on their website are obtained using 1D 
impedances (Trichtchenko and others, 2016). 
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Independent of the details of these analyses and their accuracy, because induction occurs within a continuous volume, for 
sites above 3D Earth structure, a 1D impedance will not generally be a good approximation of the corresponding impedance—
the amplitude, polarization, and phase of the geoelectric fields induced in a realistic 3D structure will differ, often significantly, 
from those induced in an idealized 1D structure (for example, McKay and Whaler, 2006; Bedrosian and Love, 2015; Bonner and 
Schultz, 2017; Kelbert and others, 2017; Weigel, 2017). Furthermore, piecewise induction of geoelectric fields in piecewise 1D 
impedances cannot resemble the induction of geoelectric fields from a fully 3D impedance. For these reasons, it would be worth-
while to reexamine the accuracy of geoelectric field results derived from qualitative 1D impedances. 

Interpolation and Validation of Geoelectric Field Estimates
To map geoelectric fields by parameterized induction, two alternative methods are available. The first might be described 

as physically motivated: a plausible 3D conductivity model is constructed from the magnetotelluric impedance tensors, and 
from this, and for a chosen geographic location, the model magnetotelluric impedance is calculated as a forward problem (for 
example, Avdeev, 2007; Weiss, 2012). The model impedance can then be convolved with a geomagnetic field time series taken 
from a variation map to obtain a map of the geoelectric field as a function of time. The second method is more computationally 
convenient, though it probably requires good survey coverage for a chosen geographic location. Here, a closely spaced set of 
magnetotelluric impedance tensors are convolved with geomagnetic time series. The resulting geoelectric time series are inter-
polated to a chosen location (for example, Bonner and Schultz, 2017). A comparison of the two computational methods has not 
yet been performed. 

Maps of storm-time geoelectric fields obtained by parameterized induction are likely to show localized areas of complex-
ity that is the result of a combination of spatially complicated geomagnetic disturbance and spatially complicated impedance. 
An important spot-check on the accuracy of the estimated geoelectric fields can be made by comparing them directly against 
measured data, such as those now being acquired at the USGS Boulder magnetic observatory in Colorado (Blum and others, 
2017); residual differences between measured and modeled geoelectric fields can be continuously updated and made available 
in realtime. Comparisons with geoelectric field measurements obtained with temporary magnetotelluric deployments or from 
longer operating observatories provide a valuable validation opportunity for geoelectric field modeling (for example, Bonner and 
Schultz, 2017; Kelbert and others, 2017; Weigel, 2017).
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Implementation
Geoelectric maps, be they in realtime or otherwise, can be provided on a spatial grid (such as latitude-longitude). To 

minimize quantization error, geoelectric values would sensibly be reported with a grid spacing that is finer than that afforded 
by measured data. Alternatively, the geomagnetic mapping algorithms could be provided along with gridded estimates of Earth 
impedance so that a user agency could, with real-time geomagnetic data streams, produce (locally) their own maps of geoelectric 
field. In some cases, it might be useful to use a finely spaced grid in regions where it is required by auroral-zone concentration 
of geomagnetic variation and localized complexity in Earth impedance. As new magnetotelluric data become available, gridded 
estimates of Earth impedance might be periodically updated. To facilitate reproducibility, data, models, and algorithms should be 
referenced by version numbers, digital object identifiers, and metadata.

Applications
For direct calculation of the geomagnetically induced current at transformer-ground point in a power-grid network, two 

quantities are needed (for example, Pirjola, 2002; Horton and others, 2012; North American Electric Reliability Corporation, 
2013): (1) the network admittance, which is a function of ground-point resistivities that can be directly measured (for example, 
Gill, 2009, chap. 11), and (2) the geomagnetically induced voltages on the network lines between the ground points, which can 
be obtained by line integration of the geoelectric fields obtained by the empirical mapping methods discussed here. Real-time 
estimation of geomagnetically induced currents could support real-time assessments of power-grid systems, which have, so far, 
relied on 1D Earth impedances (for example, Boteler and others, 2007; Marti and others, 2013). Geoelectric maps of historical 
magnetic storms would inform the design of power-grid systems that are resilient to geomagnetic disturbance.

Gap Summary
The routine mapping of geomagnetic variation over North America certainly presents significant practical challenges. Addi-

tional magnetometer stations (National Science and Technology Council, 2015, Action 5.3.6), supported by modest amounts of 
dedicated support, would certainly improve what is expected to be the relatively poor spatial resolution of real-time geomagnetic 
variation maps. These stations would sensibly be concentrated between about 45° and 65° north magnetic latitude, a zone that 
experiences intense and spatially complex storm-time disturbance and that encompasses several large North American urban 
centers (New York, Chicago, Washington, Philadelphia, Boston, Toronto, and others). The resolution of the geomagnetic varia-
tion maps can also be improved by incorporating additional physics that might be brought to the modeling of the magnetometer 
data; most promisingly, using assimilative methods (for example, Schunk and others, 2004; Kihn and Ridley, 2005; Qian and 
others, 2014) and accommodating spherical-Earth geometries (for example, Kelbert and others, 2009; Sun and others, 2015).

The other glaring need is completion of U.S. magnetotelluric surveys (National Science and Technology Council, 2015, 
Action 5.5.5)—only about half of the continental United States has been covered. Very importantly, recent survey work has 
included the northeastern United States, a region that includes major metropolitan centers and substantial electric-power-grid 
infrastructure and is situated on top of old and complicated geological and tectonic structures and at latitudes where geomag-
netic disturbance can be intense. By 2018, it is anticipated that the EarthScope magnetotelluric survey will have been completed 
across the Dakotas and Nebraska. Funding has not yet been secured to complete the survey across the southwestern and south-
central United States, though this would certainly be extremely useful. Extending the magnetotelluric survey into southern 
Canada would also facilitate real-time mapping of geoelectric fields of importance for assessing magnetic-storm interference on 
integrated North American power-grid networks.
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