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𝐀𝐀 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 array of simulated arrival intervals 
𝐴𝐴𝑗𝑗 event that the carcass arrived in interval 𝑗𝑗 (between times 𝑡𝑡𝑗𝑗−1 and 𝑡𝑡𝑗𝑗) 
CDF cumulative distribution function 
CP carcass persistence 
𝑑𝑑𝑑𝑑𝑝𝑝𝑢𝑢  density-weighted proportion or the fraction of carcasses arriving within the searched area at search unit 𝑢𝑢 
𝑓𝑓 sampling fraction or the fraction of carcasses at a site that fall at the units selected for search 
EoA  Evidence of Absence software and statistical model 
𝑔𝑔, 𝑔𝑔� carcass detection probability, estimated carcass detection probability for carcasses arriving in searched areas 
GenEst Generalized Estimator of Mortality software and statistical model 
𝐼𝐼𝑗𝑗   𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1 = length of search interval 𝑗𝑗  
𝑘𝑘 fractional change in searcher efficiency with each successive search after carcass arrival 
𝑀𝑀, 𝑀𝑀�  mortality, estimated mortality 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ number of carcass search days during the monitored period 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 number of simulation replicates for accounting for variance 
𝑂𝑂𝑖𝑖  event that the carcass is observed in search 𝑖𝑖 (at time 𝑡𝑡𝑖𝑖) 
𝑝𝑝 searcher efficiency for carcasses in the first search after carcass arrival 
SE searcher efficiency 
𝑆𝑆(𝑡𝑡) carcass persistence distribution giving the probability a carcass persists 𝑡𝑡 or more days after carcass arrival 
𝑡𝑡𝑗𝑗 time (in days) of the 𝑗𝑗th search after the start of monitoring 
𝑋𝑋 number of carcasses observed 
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GenEst Statistical Models—A Generalized 
Estimator of Mortality 

By Daniel Dalthorp1, Lisa Madsen2, Manuela Huso1, Paul Rabie3, Robert Wolpert4, Jared Studyvin3, Juniper 
Simonis5, and Jeffrey Mintz1 

Section 1—Introduction 

GenEst (a generalized estimator of mortality) is a suite of statistical models and software tools 

for generalized mortality estimation. It was specifically designed for estimating the number of bird and 

bat fatalities at solar and wind power facilities, but both the software (Dalthorp and others, 2018) and 

the underlying statistical models are general enough to be useful in various situations to estimate the 

size of open populations when detection probabilities and search coverages are less than 1. In this 

report, we outline the statistical models and data structures underlying the estimator. The models are 

numerous, complex, and intricately interwoven. Discussion begins with broad, high-level overviews of 

the general models. The lower-level technical details are then gradually added. Broader and less 

technical discussions on the general context and applications of the models and the use of the software 

are available in the software user guide (Simonis and others, 2018), vignettes bundled with the software, 

and the help files within the software itself.  

 

 
1U.S. Geological Survey. 
2Oregon State University. 
3Western EcoSystems Technology, Inc. 
4Duke University 
5DAPPER Stats. 
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At its core, GenEst is an elaboration of a binomial probability model 𝑋𝑋 ~ binomial(𝑀𝑀,𝑔𝑔), 

where 𝑋𝑋 is the observed number of carcasses and 𝑔𝑔 is the detection probability. If 𝑔𝑔 is known, then 𝑀𝑀� =

𝑋𝑋/𝑔𝑔 is an unbiased estimator for 𝑀𝑀 and the sampling variance of 𝑋𝑋 is the only source of uncertainty 

about 𝑀𝑀. In a slightly more complicated scenario in which total mortality is split into two groups, 𝐴𝐴 and 

𝐵𝐵, then 𝑀𝑀� = 𝑀𝑀�𝐴𝐴 + 𝑀𝑀�𝐵𝐵 = 𝑋𝑋𝐴𝐴
𝑔𝑔𝐴𝐴

+ 𝑋𝑋𝐵𝐵
𝑔𝑔𝐵𝐵

 is unbiased for 𝑀𝑀. GenEst makes extensive use of this simple idea of 

splitting the carcass observation data into distinct subgroups, estimating mortality in each subgroup, and 

combining subgroups into larger groups by summing. A number of technical difficulties must be 

overcome to make this simple idea work as a complete estimator that produces accurate confidence 

intervals, including accounting for the dependence of 𝑔𝑔 on the time of carcass arrival, estimating 𝑔𝑔 as a 

function of covariates, characterizing the uncertainty in 𝑔𝑔�, accounting for correlation structure of the 𝑔𝑔�'s 

among various subgroups, accounting for uncertainty in estimating 𝑀𝑀 given 𝑋𝑋 and 𝑔𝑔, and accounting for 

unsearched area. GenEst provides solutions for each of these difficulties. The technical details are 

lengthy but are fully explained in sections 2–8.  
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Section 2—Splitting Mortality Estimates by Carcass and Recombining into Subgroups 

For each carcass, 𝑥𝑥 = 1, … ,𝑋𝑋, that is discovered in carcass surveys, its contribution to the 

estimated total mortality is the reciprocal of its inclusion probability, 1/𝑔𝑔𝑥𝑥. However, that contribution 

is subject to two types of uncertainty: (1) uncertainty associated with estimating 𝑔𝑔𝑥𝑥 (sections 7–8), and 

(2) the uncertainty associated with estimating 𝑀𝑀𝑥𝑥|𝑔𝑔𝑥𝑥 (section 5). We account for the uncertainties using 

parametric bootstrapping, that is, simulating from the asymptotic distributions of the maximum 

likelihood estimators of parameters. The result is stored in an 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 matrix of carcass contributions 

to the estimated total mortality: 

𝐌𝐌� =

⎣
⎢
⎢
⎡
𝑚𝑚�1,1 𝑚𝑚�1,2 ⋯ 𝑚𝑚�1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚�2,1 𝑚𝑚�2,1 ⋯ 𝑚𝑚�2,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑚𝑚�𝑋𝑋,1 𝑚𝑚�𝑋𝑋,2 ⋯ 𝑚𝑚�𝑋𝑋,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⎦
⎥
⎥
⎤
 . 

Each column of 𝐌𝐌�  represents a single realization of the simulated contributions of all the discovered 

carcasses to the estimated total mortality. Uncertainty is captured in the distinctions among columns.  

Mortality estimation by carcass group is accomplished by subsetting the rows and then taking 

column sums. For example, total mortality (no subsetting) is estimated by taking column sums over all 

the carcasses to create a vector of estimates, 𝑀𝑀�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (∑ 𝑚𝑚�𝑥𝑥,1𝑥𝑥 ,∑ 𝑚𝑚�𝑥𝑥,2𝑥𝑥 , … ,∑ 𝑚𝑚�𝑥𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 ), from a 

parametric bootstrap from the sampling distribution of 𝑀𝑀� . The 𝐌𝐌�  matrix can be subsetted to estimate 

mortality among desired subgroups in a similar way. For example, to estimate mortality for species B, 

calculate 𝑀𝑀�B = (∑ 𝑚𝑚�𝑥𝑥,1𝑥𝑥∈B ,∑ 𝑚𝑚�𝑥𝑥,2𝑥𝑥∈B , … ,∑ 𝑚𝑚�𝑥𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥∈B ), where 𝑥𝑥 ∈ B indicates that carcass 𝑥𝑥 belongs 

to species B. GenEst extracts sample statistics (such as median and confidence intervals) from these 

empirical 𝑀𝑀�  vectors to summarize mortality estimates for subgroups or "splits" as defined by the user. 
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Section 3—Temporal Splits 

GenEst can also split mortality estimates by user-specified time intervals or by temporal 

covariates such as season. To split the 𝐌𝐌�  matrix by carcass arrival times, GenEst relies on an 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

matrix of simulated arrival intervals, 𝐀𝐀, to construct an 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 array of mortality estimates by 

time interval, 𝑀𝑀�𝑇𝑇 , as: 

𝐌𝐌�𝑻𝑻 = �
∑ 𝑚𝑚�𝑥𝑥,1𝑥𝑥∈𝐼𝐼1 ⋯ ∑ 𝑚𝑚�𝑥𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥∈𝐼𝐼1

⋮ ⋱ ⋮
∑ 𝑚𝑚�𝑥𝑥,1𝑥𝑥∈𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋯ ∑ 𝑚𝑚�𝑥𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥∈𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�, 

where 𝑥𝑥 ∈ 𝐼𝐼𝑗𝑗 indicates that the simulated arrival time of carcass 𝑥𝑥 is within the specified interval,𝑗𝑗. If the 

simulated arrival interval of a carcass 𝑥𝑥𝑖𝑖 intersects two or more of the splitting intervals (for example, 𝐼𝐼𝑗𝑗 

and 𝐼𝐼𝑗𝑗−1), the contribution of the carcass to estimated mortality, 𝑚𝑚� , is allocated proportionally to the 

intersecting splitting intervals. 

To understand the structure of the 𝐀𝐀 matrix, first note that detection probability for a carcass 

depends partly on its arrival time. For example, if monitoring runs from April 1 through October 31, 

carcasses arriving near the end of October may be available for discovery for only one or two searches, 

whereas carcasses arriving in April may be available for many searches. Search conditions also may 

vary with season. However, although carcass discovery times are recorded, arrival times are not known. 

Discovered carcasses may have arrived sometime after the previous search or in any search interval 

prior to that. Although arrival times cannot be known with certainty, GenEst analyzes the search data to 

derive probability distributions of arrival times for each carcass and, from these, creates an 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

matrix of simulated arrival intervals, 𝐀𝐀. For example, if 𝑋𝑋 = 3 and the carcasses were discovered on 

searches 𝑖𝑖 = 1, 3, and 12, respectively, and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 10, the arrival matrix, 𝐀𝐀, might look like the 

following: 

𝐀𝐀 =  �
1 1 1 1 1 1 1 1 1 1
3 3 2 3 1 3 3 3 2 1

12 11 12 10 9 12 12 12 12 11
� 
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The simulated arrival intervals for the first carcass are identically 1 because the carcass was discovered 

on the first search (at 𝑡𝑡1) and is assumed to have arrived in the first search interval, (𝑡𝑡0, 𝑡𝑡1]. In practice, 

the assumption that all carcasses discovered in carcass surveys arrived after 𝑡𝑡0 is often enforced by 

disregarding carcasses found in a careful clean-out search at 𝑡𝑡0. The second carcass was discovered in 

search 3. According to the arrival probabilities, the carcass was more likely to have arrived in interval 3 

than in any other interval, but there is a chance it arrived as early as the first interval, as indicated by the 

row of simulated arrivals. The third carcass was found on the 12th search and, in theory, could have 

arrived in any interval prior to its discovery. However, it is highly unlikely that it arrived more than a 

few intervals prior to the 12th search because, if it had, chances are that it would have been removed by 

scavengers or previously found by searchers.  
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Section 4—Estimation of Arrival Probabilities  

Suppose searches are conducted at times, 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ. For each carcass discovered in 

carcass surveys 𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ, define 𝑂𝑂𝑖𝑖 as the event that the carcass was observed during search 𝑖𝑖 

(at time 𝑡𝑡𝑖𝑖) and 𝐴𝐴𝑗𝑗 as the event that the carcass arrived in interval 𝑗𝑗 = �𝑡𝑡𝑗𝑗−1, 𝑡𝑡𝑗𝑗�, 𝑗𝑗 ≤  𝑖𝑖. The probability 

that the carcass arrived in interval 𝑗𝑗 then can be estimated as: 

Pr (𝐴𝐴𝑗𝑗|𝑂𝑂𝑖𝑖) =
Pr(𝑂𝑂𝑖𝑖|𝐴𝐴𝑗𝑗)Pr (𝐴𝐴𝑗𝑗)

∑ Pr(𝑂𝑂𝑖𝑖|𝐴𝐴𝑗𝑗)Pr (𝐴𝐴𝑗𝑗)𝑗𝑗≤𝑖𝑖
 

In theory, Pr�𝐴𝐴𝑗𝑗|𝑂𝑂𝑖𝑖� is positive for 𝑗𝑗 = 𝑖𝑖, 𝑖𝑖 − 1, … ,1, but, in practice, Pr�𝐴𝐴𝑗𝑗|𝑂𝑂𝑖𝑖� decreases rapidly to 0 

with 𝑗𝑗, so in most cases only the first few terms need to be calculated. The default for GenEst software 

is to calculate arrival probabilities for as many as eight intervals prior to discovery, but the R command-

line user may override the default in functions estM and estg. GenEst makes a further assumption that 

the arrival rate is constant in the search intervals preceding carcass arrival, so  

Pr�𝐴𝐴𝑗𝑗�𝑂𝑂𝑖𝑖� =
Pr(𝑂𝑂𝑖𝑖|𝐴𝐴𝑗𝑗)/𝐼𝐼𝑗𝑗

∑ Pr(𝑂𝑂𝑖𝑖|𝐴𝐴𝑗𝑗) Pr�𝐴𝐴𝑗𝑗� /𝐼𝐼𝑗𝑗𝑗𝑗≤𝑖𝑖
 

where 𝐼𝐼𝑗𝑗 = 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1 = length of interval 𝑗𝑗.  

The estimator is robust to variation in arrival rates among different search intervals provided 

there is not an abrupt change in arrival rate from one interval to the next. However, even in these 

unusual conditions, the potential for bias in estimating total mortality would be small because the same 

pattern would need to recur with a large fraction of the carcasses. The potential for bias would be further 

attenuated by high searcher efficiency [SE] or low persistence times.  
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Calculation of Pr�𝐴𝐴𝑗𝑗�𝑂𝑂𝑖𝑖� is based on calculation of Pr(𝑂𝑂𝑖𝑖|𝐴𝐴𝑗𝑗): 

Pr�𝑂𝑂𝑖𝑖�𝐴𝐴𝑗𝑗� =

⎩
⎪⎪
⎨

⎪⎪
⎧

0,  𝑖𝑖 < 𝑗𝑗

𝑝𝑝�
𝑆𝑆(𝑡𝑡𝑖𝑖 − 𝑡𝑡)

𝐼𝐼𝑗𝑗
𝑑𝑑𝑑𝑑

𝑡𝑡𝑗𝑗

𝑡𝑡𝑗𝑗−1

,  𝑖𝑖 = 𝑗𝑗

�� (1− 𝑝𝑝𝑘𝑘𝑠𝑠)
𝑖𝑖−𝑗𝑗−1

𝑠𝑠=0
� 𝑝𝑝𝑘𝑘𝑖𝑖−𝑗𝑗 �

𝑆𝑆(𝑡𝑡𝑖𝑖 − 𝑡𝑡)
𝐼𝐼𝑗𝑗

𝑑𝑑𝑑𝑑
𝑡𝑡𝑗𝑗

𝑡𝑡𝑗𝑗−1

, 𝑖𝑖 > 𝑗𝑗

 

where 𝑆𝑆(𝑡𝑡) is the probability that a carcass persists 𝑡𝑡 days after arrival (section 8),  𝑝𝑝 and 𝑘𝑘 are searcher 

efficiency parameters (section 7), and 𝑠𝑠 (the index on the product) runs from the search interval 

immediately before carcass discovery to the first search interval of the monitored period. A carcass may 

arrive in one season and be discovered in a later season after search conditions have changed. To 

account for this possibility, in the calculation of Pr�𝑂𝑂𝑖𝑖| 𝐴𝐴𝑗𝑗� of a carcass for a given 𝑗𝑗, the carcass is 

assigned the search characteristics appropriate to the assumed arrival interval, 𝑗𝑗. For example, if a 

carcass is discovered on the first search in the autumn, and search conditions (that is, SE and carcass 

persistence [CP] parameters) change from summer to autumn, then Pr(𝑂𝑂𝑖𝑖| 𝐴𝐴𝑖𝑖) is calculated with the 

autumn SE and CP parameters and Pr(𝑂𝑂𝑖𝑖| 𝐴𝐴𝑖𝑖−1) is calculated with the summer parameters. 

Arrival-interval probabilities, Pr�𝐴𝐴𝑗𝑗| 𝑂𝑂𝑖𝑖�, are calculated for each carcass and search interval, and 

an integer-valued 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 matrix of simulated arrival intervals, 𝐀𝐀, is constructed. Each column 

represents the arrival interval of each carcass in a simulated set of carcass arrivals. In other words, each 

column represents simulated arrival intervals of the set of observed carcasses over the course of one 

field season or simulated "year". As mentioned previously, carcass detection probabilities depend on 

arrival times, which are given in the arrival matrix 𝐀𝐀. For each simulated year (column in 𝐀𝐀), the 

detection probability for each carcass is estimated as 

𝑔𝑔� = Pr�𝑂𝑂|𝐴𝐴𝑗𝑗� = � Pr �𝑂𝑂𝑖𝑖| 𝐴𝐴𝑗𝑗�
𝑖𝑖

 

to construct an 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 matrix, 𝑔𝑔�, of carcass detection probabilities that are applicable to the carcass 

at the time of carcass arrival. For example, 𝑔𝑔�𝑥𝑥,𝑗𝑗 is a simulated inclusion probability of carcass 𝑥𝑥, 

assuming it arrived in interval 𝐴𝐴𝑥𝑥,𝑗𝑗. 
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Section 5—Uncertainty in Estimating 𝑴𝑴|(𝑿𝑿,𝒈𝒈) 

The uncertainty in estimating 𝑔𝑔𝑥𝑥 for carcass 𝑥𝑥 is captured in 𝐠𝐠�𝑥𝑥,⋅ = (𝑔𝑔�𝑥𝑥,1, … ,𝑔𝑔�𝑥𝑥,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), but there 

remains much uncertainty about the true mortality, 𝑀𝑀, even if 𝑔𝑔 is known, owing to the sampling 

variation in 𝑋𝑋 or the uncertainty in estimating 𝑀𝑀. GenEst accounts for that uncertainty in a novel way 

that lends itself well to the framework of splits. The process is to estimate the sampling variation in 𝑋𝑋, 

rescale the estimated variation to 𝑀𝑀� , and adjust for bias.  

We can assume 𝑋𝑋 ~ binomial(𝑀𝑀,𝑔𝑔), but, unfortunately, we do not know 𝑀𝑀. We can, however, 

estimate 𝑀𝑀 by 𝑋𝑋/𝑔𝑔 and (almost) define a new random variable 𝑋𝑋� ~ binomial(𝑋𝑋/𝑔𝑔,𝑔𝑔) to account for 

the variation in 𝑋𝑋|(𝑀𝑀,𝑔𝑔). The uncertainty in estimating 𝑀𝑀 would then be accounted for in 𝑀𝑀� = 𝑋𝑋�/𝑔𝑔. 

However, 𝑋𝑋/𝑔𝑔 might not be an integer and cannot serve as the index for a binomial random variable. 

Instead, we define 𝑋𝑋� ~ cbinom(𝑋𝑋/𝑔𝑔,𝑔𝑔), where cbinom is a continuous generalization of the standard 

binomial distribution (Ilienko, 2013), which is implemented in the R package cbinom (Dalthorp, 2018).  
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The continuous binomial spreads the probability mass of the binomial distribution on each integer 𝑘𝑘 to 

the interval [𝑘𝑘,𝑘𝑘 + 1), so the distribution is a smoothed version of the binomial but shifted slightly to 

the right. The mean of the continuous binomial distribution with parameters 𝑚𝑚 and 𝑔𝑔 is 

∫ [1 − 𝐹𝐹(𝑥𝑥;𝑚𝑚,𝑔𝑔)]𝑑𝑑𝑑𝑑𝑚𝑚+1
0 , where 𝐹𝐹 is the CDF of the continuous binomial: 

𝐹𝐹(𝑥𝑥;𝑚𝑚,𝑔𝑔) = �

0, 𝑥𝑥 ≤ 0
𝐵𝐵(𝑥𝑥,𝑚𝑚 + 1 − 𝑥𝑥,𝑔𝑔)
𝐵𝐵(𝑥𝑥,𝑚𝑚 + 1 − 𝑥𝑥, 0)

, 0 < 𝑥𝑥 ≤ 𝑚𝑚 + 1

1, 𝑥𝑥 > 𝑚𝑚 + 1

 

and 

𝐵𝐵(𝑥𝑥,𝑦𝑦,𝑔𝑔) =  � 𝑡𝑡𝑥𝑥−1(1 − 𝑡𝑡)𝑦𝑦−1𝑑𝑑𝑑𝑑
1

𝑔𝑔
 

is the incomplete beta function. The expectation of a random variable 𝑋𝑋� ~ cbinom(𝑚𝑚,𝑔𝑔) is  

E[𝑋𝑋�] =  � [1 − 𝐹𝐹(𝑥𝑥;𝑚𝑚,𝑔𝑔)]𝑑𝑑𝑑𝑑
𝑚𝑚+1

0
 

which is approximately 𝑚𝑚𝑚𝑚 + 0.5 and can be calculated numerically. Because the expected value of a 

binomial random variable 𝑋𝑋 ~ binomial(𝑚𝑚,𝑔𝑔) is 𝑚𝑚𝑚𝑚, 𝑋𝑋� exceeds 𝑋𝑋 by about 0.5. Thus, 𝑋𝑋�/𝑔𝑔 would be 

biased for estimating 𝑀𝑀, so we subtract the bias before dividing by 𝑔𝑔: 

𝑀𝑀� =
�𝑋𝑋� − �E[𝑋𝑋�]− 𝑥𝑥��

𝑔𝑔
. 

Because this estimator is unbiased, mortality estimates can be summed. For example, if 𝑀𝑀�𝐴𝐴 is the 

estimated mortality in area A and 𝑀𝑀�𝐵𝐵 is the estimated mortality in area B, then 𝑀𝑀�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝑀𝑀�𝐴𝐴 + 𝑀𝑀�𝐵𝐵 is an 

unbiased estimator for the two areas combined. There is nothing special about "area" here; A and B 

could represent times, species, carcass sizes, search teams, turbine types, or other variables. GenEst 

takes this idea to the limit and builds the 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 matrix, 𝐌𝐌� , in which each carcass represents its own 

"area". Users then define how they wish to split the overall mortality into summary groups. In the 

simplest case, total mortality is estimated as the sum of the contribution of each carcass to the total; that 

is, the column sums of the 𝐌𝐌�  matrix.  
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Section 6—Accounting for Unsearched Area 

Unless the user is interested in estimating mortality strictly in the searched area, 𝑔𝑔� values must 

be adjusted to account for the unsearched area. In practice, some carcasses are likely to fall outside the 

searched area in a given unit (for example, in an unsearched part of a search ring at a solar power tower 

facility or beyond the search radius at a wind turbine). For each search unit, 𝑢𝑢, the expected fraction of 

carcasses that are killed at the unit but fall outside the searched area is the density-weighted proportion 

or 𝑑𝑑𝑑𝑑𝑝𝑝𝑢𝑢 (Huso and Dalthorp, 2014). Additionally, there may be units at a site that are not searched at 

all. The expected fraction of carcasses arriving at the units searched at a site is the sampling fraction or 

f. For example, if units at a wind facility are the individual turbines, then 𝑓𝑓 would be the fraction of 

turbines surveyed. Thus, the contributions of the respective carcasses to the estimate of total mortality 

are then summarized in a 𝑋𝑋 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 array as 1
𝐝𝐝𝐝𝐝𝐝𝐝⋅𝐠𝐠�⋅𝑓𝑓

, where 𝐝𝐝𝐝𝐝𝐝𝐝 = diag(𝐝𝐝𝐝𝐝𝐝𝐝) is the diagonal matrix of 

𝑑𝑑𝑑𝑑𝑑𝑑 values associated with the carcassess. For example, if carcass 1 was found at unit 17 and was a 

medium-sized bird, then 𝑑𝑑𝑑𝑑𝑝𝑝1,1 would be the 𝑑𝑑𝑑𝑑𝑑𝑑 for medium-sized birds at unit 17. 𝐌𝐌�  would then be 

calculated based on this adjusted 𝐠𝐠�∗ = 𝐝𝐝𝐝𝐝𝐝𝐝 ⋅ 𝐠𝐠� ⋅ 𝑓𝑓. 
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Section 7—Searcher Efficiency 

Searcher efficiency and carcass persistence (section 8) are estimated from field trials where a 

known number of carcasses are placed and their fate (found or scavenged) is recorded. Let 𝑝𝑝 be the 

initial SE for fresh carcasses, or, more precisely, the conditional probability of detecting a carcass on the 

first search after carcass arrival, given that the carcass is present at the time of the search. Let 𝑘𝑘 be the 

fractional change in SE with each successive search. Thus, if SE trial carcasses that are missed in one 

search are left in the field for possible discovery on later searches, 𝑝𝑝 and 𝑘𝑘 can be estimated 

simultaneously as functions of categorical covariates.  

Specifically, let 𝑝𝑝𝑖𝑖 be the probability that carcass 𝑖𝑖 is found during the first search after carcass 

arrival given that it is present at the time of the search. The model allows 𝑝𝑝𝑖𝑖 to depend on a vector of 

covariates 𝐗𝐗𝑖𝑖 as logit(𝑝𝑝𝑖𝑖) = 𝐗𝐗𝑖𝑖𝛽𝛽, where 𝛽𝛽 is a vector of coefficients associated with combinations of 

covariate levels. The model allows a constant multiplicative reduction in detection probability in 

subsequent searches. The probability of finding carcass i during search j is  

Pr{detect carcass 𝑖𝑖 on occasion 𝑗𝑗}  =  𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖
𝑗𝑗−1 

where 𝑘𝑘𝑖𝑖 may also be a logit-linear function of covariates and coefficients. These covariates need not be 

the same as those used to model 𝑝𝑝𝑖𝑖.  

Consider the search outcome history for a given carcass. If the carcass was scavenged before the 

first search occasion, then the carcass provides no information to estimate SE, and the model ignores 

these carcasses. If the carcass is present during one or more search occasions, then the probability of its 

search history is determined by that history and equation. These relations are easiest to see with a couple 

of examples. Suppose carcass 𝑖𝑖 (from the SE field trials) was missed on three searches and detected on 

the fourth search. Its search history is then (0, 0, 0, 1) in the notation of the data, and the probability of 

this search history is 

Pr{(0, 0, 0, 1)} = �1− 𝑝𝑝𝑖𝑖��1− 𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖� �1− 𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖
2�𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖

3 = 𝐿𝐿𝑖𝑖 

where 𝐿𝐿𝑖𝑖 denotes the contribution of carcass 𝑖𝑖 to the joint likelihood. 
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A carcass may never be found. For example, suppose carcass 𝑖𝑖′ was missed on the first two 

search occasions and was then scavenged before the third search. This carcass has search history (0, 0), 

and 

𝐿𝐿𝑖𝑖′ = (1 − 𝑝𝑝𝑖𝑖′)(1− 𝑝𝑝𝑖𝑖′𝑘𝑘𝑖𝑖′) 

 

The log-likelihood of the data is then expressed as log 𝐿𝐿 = ∑ log 𝐿𝐿𝑖𝑖𝑁𝑁
𝑖𝑖=1 , where 𝑁𝑁 denotes the total 

number of carcasses in the trial. Let 𝑧𝑧𝑖𝑖 denote the number of zeros in the search history for carcass i 

(that is, 𝑧𝑧𝑖𝑖 is the number of times carcass 𝑖𝑖 was missed in searches), and let 𝑓𝑓𝑖𝑖 denote the search 

occasion where the carcass was found, with 𝑓𝑓𝑖𝑖 = 0 if the carcass was never found. The, log𝐿𝐿𝑖𝑖 will then 

have the form 

log𝐿𝐿𝑖𝑖 = � log �1− 𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖
𝑗𝑗�+ 𝟏𝟏𝑓𝑓𝑖𝑖>0 log �𝑝𝑝𝑖𝑖𝑘𝑘𝑖𝑖

𝑓𝑓𝑖𝑖−1�
𝑧𝑧𝑖𝑖−1

𝑗𝑗=0
 

where 𝟏𝟏𝑓𝑓𝑖𝑖>0 = 1 if 𝑓𝑓𝑖𝑖 > 0 and zero otherwise. Thus, the log-likelihood depends on the data only 

through the number of missed searches and whether the carcass was eventually found. 

The log-likelihood, 𝐿𝐿, of the data is numerically maximized in using R's optim function. From 

the theory of maximum likelihood, the vector of maximum likelihood estimators (MLEs) for the 

parameters (𝛽𝛽�) is asymptotically multivariate normal with mean equal to the true parameter values and 

variance-covariance matrix given by the inverse information matrix, which is returned by optim as the 

hessian.  

To account for the uncertainty in estimating 𝑝𝑝 and 𝑘𝑘 parameters, GenEst first approximates the 

sampling distribution of 𝛽𝛽� by simulating from the multivariate normal (MVN), 

𝛽𝛽�sim~MVN(𝛽𝛽�,𝐇𝐇−1) 

Where 𝐇𝐇 is the Hessian matrix returned by optim().  

Simulated sampling distributions of 𝑝𝑝𝑖𝑖 and 𝑘𝑘𝑖𝑖 are obtained by back transformation of simulated 

𝛽̂𝛽. Specifically, let 𝐗𝐗𝑖𝑖 represent the covariate vector for the 𝑖𝑖th carcass, then 

𝑘𝑘�𝑖𝑖 =
1

1 + exp�−𝐗𝐗𝑖𝑖 ⋅ 𝛽𝛽�𝑘𝑘�
 and 𝑝𝑝�𝑖𝑖 =

1
1 + exp (−𝐗𝐗𝑖𝑖 ⋅ 𝛽𝛽�𝑝𝑝)

 

where 𝛽̂𝛽𝑝𝑝 and 𝛽̂𝛽𝑘𝑘 are the components of 𝛽̂𝛽 associated with 𝑝𝑝 and 𝑘𝑘, respectively. 
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Section 8—Carcass Persistence 

Carcass persistence times are modeled using censored exponential, Weibull, lognormal, and 

loglogistic survival models, which are fit by maximum likelihood estimation using the R functions 

survival::survreg (Therneau, 2015) and optim (R Core Team, 2018). Both the location and 

scale parameters (Kalbfleisch and Prentice, 2002, chapter 2) may depend on categorical covariates, such 

as visibility class, season, or other factors. As with the SE estimates, vectors of simulated persistence 

parameters are generated from the fitted models. 

References Cited 

Dalthorp, D., 2018, cbinom—Continuous analog of a binomial distribution—R package, version 1.3: 

Web page accessed October 19, 2018, at https://CRAN.R-project.org/package=cbinom. 

Dalthorp, D., Simonis, J., Madsen, L., Huso, M., Rabie, P., Mintz, J., Wolpert, R., Studyvin, J., and 

Korner-Nievergelt, F., 2018, GenEst—Generalised fatality estimator—R package, version 1.0.0: Web 

page accessed October 19, 2018, at https://code.usgs.gov/ecosystems/GenEst/tags/1.0.0. 

Huso, M.M.P., and Dalthorp, D., 2014, Accounting for unsearched areas in estimating wind turbine-

caused fatality: The Journal of Wildlife Management, v. 78, no. 2, p. 347–358. 

Ilienko, A., 2013, Continuous counterparts of Poisson and binomial distributions and their properties: 

Annales Universitatis Scientarium Budapestinensis, Sectio Computatorica, v. 39: p. 137–147. 

Kalbfleisch, J.D., and Prentice, R.L., 2002, The statistical analysis of failure time data: Hoboken, New 

Jersey, Wiley, 462 p. 

R Core Team, 2018, R—A language and environment for statistical computing: Vienna, Austria, R 

Foundation for Statistical Computing web page, accessed October 19, 2018, at https://www.R-

project.org/. 

Simonis, J., Dalthorp, D., Huso, M., Mintz, J., Madsen, L., Rabie, P., and Studyvin, J., 2018, GenEst 

user guide: Software for a generalized estimator of mortality: U.S. Geological Survey Techniques and 

Methods, book 7, chap. C19, 72 p. 

Therneau, T., 2015, Package for survival analysis in S, version 2.38: The Comprehensive R Archive 

Network web page, accessed October 19, 2018, at https://CRAN.R-project.org/package=survival. 





Publishing support provided by the U.S. Geological Survey
Science Publishing Network, Tacoma Publishing Service Center 

For more information concerning the research in this report, contact the
Director, Forest and Rangeland Ecosystem Science Center 
U.S. Geological Survey 
777 NW 9th St., Suite 400 
Corvallis, Oregon 97330 
https://www.usgs.gov/centers/fresc/ 

http://fresc.usgs.gov/


Dalthrop and others—
G

enEst Statistical M
odels—

A
 G

eneralized Estim
ator of M

ortality—
Techniques and M

ethods 7-A2

ISSN 2328-7055 (online)
https://doi.org/10.3133/tm7A2   

https://doi.org/10.3133/tm7A2

	GenEst Statistical Models—A Generalized  Estimator of Mortality
	Contents
	Abbreviations
	Section 1—Introduction
	Section 2—Splitting Mortality Estimates by Carcass and Recombining into Subgroups
	Section 3—Temporal Splits
	Section 4—Estimation of Arrival Probabilities
	Section 5—Uncertainty in Estimating 𝑴|(𝑿, 𝒈)
	Section 6—Accounting for Unsearched Area
	Section 7—Searcher Efficiency
	Section 8—Carcass Persistence
	References Cited



